Local Search

- Local search algorithms begin with initial solution and examine its neighborhood to find a feasible point with lower cost.

Input Expansion

<table>
<thead>
<tr>
<th>xyz</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>1</td>
</tr>
<tr>
<td>01-</td>
<td>1</td>
</tr>
<tr>
<td>-11</td>
<td>1</td>
</tr>
</tbody>
</table>

Convex versus Non-Convex

<table>
<thead>
<tr>
<th>xyz</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-0</td>
<td>1</td>
</tr>
<tr>
<td>01-</td>
<td>1</td>
</tr>
<tr>
<td>-11</td>
<td>1</td>
</tr>
</tbody>
</table>
Input Reduction

Output Expansion

Make Sparse

Simple Minimization Loop

\[
F = \text{Expand}(F, D); \\
F = \text{Irredundant}(F, D); \\
do \{ \\
\quad \text{cost} = |F|; \\
\quad F = \text{Reduce}(F, D); \\
\quad F = \text{Expand}(F, D); \\
\quad F = \text{Irredundant}(F, D); \\
\} \text{ while } (|F| < \text{cost}); \\
F = \text{Make}_\text{Sparse}(F, D); \\
\]
Checking for Equivalence

<table>
<thead>
<tr>
<th>xyz</th>
<th>f</th>
<th>xyz</th>
<th>f</th>
<th>xyz</th>
<th>(F−{c_i})</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>1</td>
<td>c_i :000</td>
<td>1</td>
<td>01-</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>01-</td>
<td>1</td>
<td>0-0</td>
<td>1</td>
<td>-11</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>-11</td>
<td>1</td>
<td>c_i' :010</td>
<td>1</td>
<td>100</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

In general, a term may be contained in a set of terms: xz \ xy + y'z

Containment and Tautologies

- Theorem 5.2.1: for a function \(f \) and cube \(c \),
 \(c \ f \iff f_c = 1 \).
- Observation: \(g \ f \Rightarrow g_c \ f_c \).
- Proof:
 \(c \ f \Rightarrow c_c \ f_c \iff 1 \ f_c \iff f_c = 1 \).
- Cofactoring simplifies the function.
- We deal with a uniform problem--tautology.

Checking for Equivalence

- When a cube is expanded the new minterms added must not be in the OFF-set.
- When a cube is reduced the removed minterms must be covered by other cubes or belong to the DC-set.
- If \(F \) is the cover, D the don’t cares, \(c_i \) the cube being expanded or reduced, and \(c_i' \) the minterms added or removed:
 \(c_i' \leq (F - \{c_i\}) \cup D \).

Containment and Tautologies

- Recall: \(f = x f_x + x' f'_x \).
- Cofactoring is commutative: \((f_{x1})_{x2} = (f_{x2})_{x1} \).
- The cofactor of a function \(f \) with respect to a cube \(c \) is the successive cofactoring of \(f \) with respect to all the literals in \(c \).
- A function identically 1 is a tautology.
Multiple Output Cofactors

- Eliminate the rows that disagree with the input part of c_i.
- A disagreement means the row has a 1 in an input column where c_i has a 0 or vice versa.
- Eliminate the rows that do not have at least a 1 in an output column where c_i has a 1.

Tautology Examples

- Is $xz \ xy + y'z$?
- $c = xz$ and $f = xy + y'z$.
- $f_c = y + y' = 1$.

<table>
<thead>
<tr>
<th>xyz</th>
<th>fg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1--</td>
<td>10</td>
</tr>
<tr>
<td>--1</td>
<td>10</td>
</tr>
<tr>
<td>0-1</td>
<td>01</td>
</tr>
<tr>
<td>-10</td>
<td>01</td>
</tr>
</tbody>
</table>

$y	f$
1 | 1

Unate Covers

- A cover F is *monotonic increasing* in x_i iff x_i never appears complemented in F.
- A cover F is *monotonic decreasing* in x_i iff x_i never appears uncomplemented in F.
- Theorem 5.2.2:
 - If function f is unate in x_i then there exists a cover of f unate in x_i.
 - If a cover F is unate in x_i then the function F represents is also unate in x_i.

Unate Functions

- A function $f(x_1, x_2, ..., x_n)$ is *monotonically increasing* in variable x_i iff:

 $f(0, x_2, ..., x_n) \ f(1, x_2, ..., x_n), \ \forall (x_2, ..., x_n)$.
- It is *monotonically decreasing* in x_i iff:

 $f(0, x_2, ..., x_n) \ f(1, x_2, ..., x_n), \ \forall (x_2, ..., x_n)$.
- If neither is true, f is *non-monotonic* in x_i.
- $f(x_1, x_2, ..., x_n)$ is *unate* iff it is monotonic increasing or decreasing in all variables.
Tautology Check Example

<table>
<thead>
<tr>
<th>xyz</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>1</td>
</tr>
<tr>
<td>11-</td>
<td>1</td>
</tr>
<tr>
<td>00-</td>
<td>1</td>
</tr>
<tr>
<td>0-0</td>
<td>1</td>
</tr>
</tbody>
</table>

\[
\begin{array}{c|c}
 yz & f_x \\
\hline
-1 & 1 \\
1- & 1 \\
\end{array}
\]

split on x

\[
\begin{array}{c|c}
 yz & f_{x'} \\
\hline
0- & 1 \\
-0 & 1 \\
\end{array}
\]

Unate Covers and Tautologies

- Theorem 5.2.3: A unate cover \(F \) is a tautology iff it contains the constant term 1.
- Observation: \(f = 1 \iff f_x = f_{x'} = 1 \).
- To check if a cover \(F \) is a tautology,
 - Apply recursive cofactors until they are unate.
 - If a cofactor is unate, it must contain a term of all ‘-’ (don’t cares) in the input part.
 - If all cofactors are tautologies, then \(F \) is also.
 - If one cofactor is not a tautology, then \(F \) is not.

Additional Speed-Up Techniques

- A row of ‘-’ implies that the function is tautologous in all outputs with a ‘1’.
- An input column of all 1s or 0s implies the function is not a tautology.
- If there are less than 8 inputs, then generate a truth table.
- If the vertex count is insufficient, then it is not a tautology (i.e., \(2^d \) for each cube).

A Further Simplification

- If \(F \) is monotonic increasing in \(x_j \):
 \[
 F(x_j, \ldots, x_n) = x_j A(x_2, \ldots, x_n) + B(x_2, \ldots, x_n)
 \]
 \[
 F_{x_j} = A + B \quad F_{x_j}' = B.
 \]
 \[
 \begin{array}{c|c|c|c}
 & F_{x_j} & F_{x_j}' \\
 1 & 1 & F_{x_j} 1 \\
F_{x_j}' & 1 & F 1 \\
F_{x_j}' & 1 & F 1 \\
F_{x_j}' & 1 & F 1 \\
\end{array}
 \]
Partitioning Example

1 2 3 4 5
1 1-1--
2 -1--0
3 0--0-
4 --01-
5 ----1

Partitioning

• If a cover F can be written as:
 \[F = G + H \]
 where G and H have disjoint support, then F is a tautology iff either G or H is one.

• To construct a bipartition \((C_1, C_2)\):
 – Pick a cube and put all columns w/0 or 1 in \(C_1\).
 – Select all cubes that intersect \(C_1\), and add their columns with 0 or 1 to \(C_1\).
 – Repeat until \(C_1\) does not change.

Recursive Complementation

• Theorem 5.3.1: for a boolean function \(f\),
 \[f' = x f'_x + x' f'_x \]

• To compute the complement of a cover \(F\),
 – Recursively cofactor until a single cube.
 – Apply DeMorgan’s laws to get a complement.
 – Merge cubes that occur in both cofactors (i.e., \(x c + x' c = c\)).

Choosing the Right Direction

<table>
<thead>
<tr>
<th>(xyz)</th>
<th>(f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>1</td>
</tr>
<tr>
<td>01-</td>
<td>1</td>
</tr>
<tr>
<td>10-</td>
<td>1</td>
</tr>
<tr>
<td>1-0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(xyz)</th>
<th>(f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>1</td>
</tr>
<tr>
<td>010</td>
<td>1</td>
</tr>
<tr>
<td>110</td>
<td>1</td>
</tr>
<tr>
<td>10-</td>
<td>1</td>
</tr>
</tbody>
</table>
Using the OFF-set in Expansion

- A cube can be expanded if it does not intersect any cube of the OFF-set.
- The expanded cube must conflict in at least one position with each cube in OFF-set.
- The *blocking matrix* has a row for each cube in the OFF-set, a column for each variable, and ones where there is a conflict.
- Maximum expansion requires finding the minimum set of columns to cover all rows.

Complementation Example

<table>
<thead>
<tr>
<th></th>
<th>f_x</th>
<th>x'</th>
<th>f_yz</th>
<th>x</th>
<th>f_x</th>
</tr>
</thead>
<tbody>
<tr>
<td>yz</td>
<td>10-1</td>
<td>1</td>
<td>0-1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Essential Primes

- Should identify all essential primes because they will be part of every optimal solution.
- After initial expansion, all cubes in cover are primes and all essentials are present.
- Should put essentials aside to avoid silly things like reducing them.

Irredundant Step

- Can be achieved with a covering problem of manageable size.
- Find the minimum subset of the cubes in the current cover that covers all minterms in the ON-set.
Essential Primes Example

\[y'z' + xy' + xz \]

- **Test** \(y'z' \):
 - Intersects \(xy' \) (intersection is \(xy'z' \)).
 - Consensus with \(xz \) (\(xy' \)).
 - \(y'z' \) \(xy' + xy'z' = y'z' \) \(xy' \)? Essential.

- **Test** \(xy' \):
 - Intersects \(xz \) (intersection is \(xy'z \)).
 - Consensus with \(y'x' \) (\(xy'z' \)).
 - \(xy' \) \(xy'z + xy'z' = xy' \)? Not essential.

Essential Primes

- **Theorem 5.4.1**: \(F \) is a cover of primes, \(e \) is one of the primes, and \(G \) is remaining primes. Then, \(e \) is an essential prime iff it is not covered by the union of:
 - The consensus terms of \(e \) and each term of \(G \).
 - The intersections of \(e \) and each term of \(G \).

Multiple-Valued Logics

- **Let** \(P_i = \{0, ..., p_i - 1\} \) and \(B = \{0, 1\} \).
- A *multiple-valued input, binary-valued output function* \(f \) is:
 \[f: P_1 \cdots P_n \rightarrow B. \]
- **Let** \(X_i \) be a variable over \(P_i \) and let \(S_i \) be a subset of \(P_i \), then \(X_i^{S_i} \) is a mapping:
 \[
 \begin{align*}
 0 & \quad \text{if } X_i \notin S_i \\
 1 & \quad \text{if } X_i \in S_i
 \end{align*}
 \]

Essential Primes Example

\[x'z' + x'y + xz \]

- **Test** \(x'y \):
 - Intersects with \(x'z' \) (\(x'yz' \)).
 - Consensus with \(xz \) (\(yz \)).
 - \(x'y \) \(x'yz' + yz \).
 - Cofactor right-side: \(z' + z \) (tautology).
 - Hence, \(x'y \) is essential.
<table>
<thead>
<tr>
<th>Multiple-Valued Logics</th>
</tr>
</thead>
<tbody>
<tr>
<td>• $X_i^{S_i}$ is a literal of variable X_i.</td>
</tr>
<tr>
<td>• We build SOP formulae in same way.</td>
</tr>
<tr>
<td>• Can define implicants, prime implicant, etc.</td>
</tr>
<tr>
<td>• Many laws of Boolean algebras still hold:</td>
</tr>
<tr>
<td>[f = X_i^{S_i} f_{X_i^{S_i}} + X_i^{S_i'} f_{X_i^{S_i'}}]</td>
</tr>
<tr>
<td>• Espresso-mv uses multi-valued functions.</td>
</tr>
</tbody>
</table>