Local Search

- Local search algorithms begin with initial solution and examine its neighborhood to find a feasible point with lower cost.
Convex versus Non-Convex

Convex

Non-convex

Input Expansion

<table>
<thead>
<tr>
<th>xyz</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>1</td>
</tr>
<tr>
<td>01−</td>
<td>1</td>
</tr>
<tr>
<td>−11</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>xyz</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0−0</td>
<td>1</td>
</tr>
<tr>
<td>01−</td>
<td>1</td>
</tr>
<tr>
<td>−11</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>xyz</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0−0</td>
<td>1</td>
</tr>
<tr>
<td>−11</td>
<td>1</td>
</tr>
</tbody>
</table>
Output Expansion

```
xyz | fg
---|---
-1  0  1  | 10
 1  0  1  | 10
 0  0  1  | 10
-1  0  1  | 01
 1  0  1  | 01
-1  1  0  | 11
-1  1  1  | 11
```

Input Reduction

```
xyz | fg
---|---
-1  0  1  | 10
 1  0  1  | 10
 0  0  1  | 10
-1  0  1  | 01
 1  0  1  | 01
-1  1  0  | 11
-1  1  1  | 11
```

Simple Minimization Loop

\[F = \text{Expand}(F, D); \]
\[F = \text{Irredundant}(F, D); \]
do {
 cost = \|F\|;
 F = \text{Reduce}(F, D);
 F = \text{Expand}(F, D);
 F = \text{Irredundant}(F, D);
} while (\|F\| < \text{cost});
\[F = \text{Make}_\text{Sparse}(F, D); \]
Checking for Equivalence

- When a cube is expanded the new minterms added must not be in the OFF-set.
- When a cube is reduced the removed minterms must be covered by other cubes or belong to the DC-set.
- If F is the cover, D the don’t cares, c_i the cube being expanded or reduced, and c_i' the minterms added or removed:

$$c_i' \leq (F - \{c_i\}) \cup D.$$

<table>
<thead>
<tr>
<th>xyz</th>
<th>f</th>
<th></th>
<th>xyz</th>
<th>f</th>
<th></th>
<th>xyz</th>
<th>(F- {c_i})</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>1</td>
<td></td>
<td>c_i : 000</td>
<td>1</td>
<td>01-</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01-</td>
<td>1</td>
<td></td>
<td>0-0</td>
<td>1</td>
<td>-11</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-11</td>
<td>1</td>
<td></td>
<td>c_i' : 010</td>
<td>1</td>
<td>100</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In general, a term may be contained in a set of terms: $xz \quad xy + y'z$
Containment and Tautologies

- Recall: \(f = x f_x + x' f_x \).
- Cofactoring is commutative: \((f_{x1})_{x2} = (f_{x2})_{x1}\).
- The cofactor of a function \(f \) with respect to a cube \(c \) is the successive cofactoring of \(f \) with respect to all the literals in \(c \).
- A function identically 1 is a *tautology*.

Theorem 5.2.1: for a function \(f \) and cube \(c \),

\[
c f \iff f_c 1.
\]

- Observation: \(g f \Rightarrow g_c f_c \).
- Proof:

\[
c f \Rightarrow c_c f_c \iff 1 f_c \iff f_c = 1.
\]

- Cofactoring simplifies the function.
- We deal with a uniform problem--tautology.
Tautology Examples

• Is $xz \ xy + y'z$?
• $c = xz$ and $f = xy + y'z$.
• $f_c = y + y' = 1$.

\[
\begin{array}{c|cc}
xyz & fg \\
\hline
1-- & 10 \\
--1 & 10 \\
0-1 & 01 \\
-10 & 01 \\
\end{array}
\]

$c_i = --1 | 10$

\[
\begin{array}{c|cc}
xyz & fg \\
\hline
1-- & 10 \\
--1 & 10 \\
0-1 & 01 \\
-10 & 01 \\
\end{array}
\]

$c_i' = 1-1 | 10$

\[
\begin{array}{c|c}
y & f \\
\hline
- & 1 \\
\end{array}
\]

Multiple Output Cofactors

• Eliminate the rows that disagree with the input part of c_i.
• A disagreement means the row has a 1 in an input column where c_i has a 0 or vice versa.
• Eliminate the rows that do not have at least a 1 in an output column where c_i has a 1.
Unate Functions

• A function \(f(x_1, x_2, ..., x_n) \) is *monotonically increasing* in variable \(x_j \) iff:
 \[
 f(0, x_2, ..., x_n) \leq f(1, x_2, ..., x_n), \quad \forall (x_2, ..., x_n).
 \]
• It is *monotonically decreasing* in \(x_j \) iff:
 \[
 f(0, x_2, ..., x_n) \geq f(1, x_2, ..., x_n), \quad \forall (x_2, ..., x_n).
 \]
• If neither is true, \(f \) is *non-monotonic* in \(x_j \).
• \(f(x_1, x_2, ..., x_n) \) is *unate* iff it is monotonic increasing or decreasing in all variables.

Unate Covers

• A cover \(F \) is *monotonic increasing* in \(x_j \) iff \(x_j \) never appears complemented in \(F \).
• A cover \(F \) is *monotonic decreasing* in \(x_j \) iff \(x_j \) never appears uncomplemented in \(F \).
• Theorem 5.2.2:
 – If function \(f \) is unate in \(x_j \) then there exists a cover of \(f \) unate in \(x_j \).
 – If a cover \(F \) is unate in \(x_j \) then the function \(F \) represents is also unate in \(x_j \).
Unate Covers and Tautologies

• Theorem 5.2.3: A unate cover F is a tautology iff it contains the constant term 1.
• Observation: $f = 1 \iff f_x = f_{x'} = 1$.
• To check if a cover F is a tautology,
 – Apply recursive cofactors until they are unate.
 – If a cofactor is unate, it must contain a term of all ‘-’ (don’t cares) in the input part.
 – If all cofactors are tautologies, then F is also.
 – If one cofactor is not a tautology, then F is not.

Tautology Check Example

<table>
<thead>
<tr>
<th>xyz</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>1</td>
</tr>
<tr>
<td>110</td>
<td>1</td>
</tr>
<tr>
<td>111</td>
<td>1</td>
</tr>
<tr>
<td>000</td>
<td>1</td>
</tr>
<tr>
<td>001</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>yz</th>
<th>f_x</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>0</td>
</tr>
<tr>
<td>01</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>yz</th>
<th>$f_{x'}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>01</td>
<td>1</td>
</tr>
<tr>
<td>00</td>
<td>1</td>
</tr>
</tbody>
</table>
A Further Simplification

• If F is monotonic increasing in x_j:

$$F(x_1,\ldots,x_n) = x_1 A(x_2,\ldots,x_n) + B(x_2,\ldots,x_n)$$

$$F_{x_j} = A + B \quad F_{x_j'} = B.$$

$$
\begin{array}{ccc}
F_{x_j'} & F_{x_j} \\
F_{x_j'} & 1 \Rightarrow F_{x_j} & 1 \\
F_{x_j'} & 1 \Rightarrow F & 1 \\
F_{x_j'} & 1 \Rightarrow F & 1 \\
F_{x_j'} & 1 \Leftrightarrow F & 1
\end{array}
$$

Additional Speed-Up Techniques

• A row of ‘-’ implies that the function is tautologous in all outputs with a ‘1’.

• An input column of all 1s or 0s implies the function is not a tautology.

• If there are less than 8 inputs, then generate a truth table.

• If the vertex count is insufficient, then it is not a tautology (i.e., 2^d for each cube).
Partitioning

• If a cover F can be written as:
 $$F = G + H$$
where G and H have disjoint support, then F is a tautology iff either G or H is one.

• To construct a bipartition (C_1, C_2):
 – Pick a cube and put all columns w/0 or 1 in C_1.
 – Select all cubes that intersect C_1, and add their columns with 0 or 1 to C_1.
 – Repeat until C_1 does not change.

Partitioning Example

1 2 3 4 5
1 1-1--
2 -1--0
3 0--0-
4 --01-
5 -----1

1 11-
1 1
3 0-0
4 -01

25
2 10
5 -1
Choosing the Right Direction

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Recursive Complementation

- **Theorem 5.3.1**: for a boolean function f,
 \[f' = x f'_x + x' f'_x. \]
- To compute the complement of a cover F,
 - Recursively cofactor until a single cube.
 - Apply DeMorgan’s laws to get a complement.
 - Merge cubes that occur in both cofactors (i.e., $xc + x’c = c$).
Using the OFF-set in Expansion

- A cube can be expanded if it does not intersect any cube of the OFF-set.
- The expanded cube must conflict in at least one position with each cube in OFF-set.
- The blocking matrix has a row for each cube in the OFF-set, a column for each variable, and ones where there is a conflict.
- Maximum expansion requires finding the minimum set of columns to cover all rows.
Irredundant Step

- Can be achieved with a covering problem of manageable size.
- Find the minimum subset of the cubes in the current cover that covers all minterms in the ON-set.

Essential Primes

- Should identify all essential primes because they will be part of every optimal solution.
- After initial expansion, all cubes in cover are primes and all essentials are present.
- Should put essentials aside to avoid silly things like reducing them.
Essential Primes

• Theorem 5.4.1: F is a cover of primes, e is one of the primes, and G is remaining primes. Then, e is an essential prime iff it is not covered by the union of:
 – The consensus terms of e and each term of G.
 – The intersections of e and each term of G.

Essential Primes Example

\[y'z' + xy' + xz \]

• Test $y'z'$:
 – Intersects xy' (intersection is $xy'z'$).
 – Consensus with xz (xy').
 – $y'z' \ xy' + xy'z' = y'z' \ xy'$? Essential.

• Test xy':
 – Intersects xz (intersection is $xy'z$).
 – Consensus with $y'x'$ ($xy'z'$).
 – $xy' \ xy'z + xy'z' = xy'$? Not essential.
Essential Primes Example

\[x'z' + x'y + xz \]

- Test \(x'y \):
 - Intersects with \(x'z' \) (\(x'yz' \)).
 - Consensus with \(xz \) (\(yz \)).
 - \(x'y \quad x'yz' + yz \).
 - Cofactor right-side: \(z' + z \) (tautology).
 - Hence, \(x'y \) is essential.

Multiple-Valued Logics

- Let \(P_i = \{0, \ldots, p_i -1\} \) and \(B = \{0, 1\} \).

- A multiple-valued input, binary-valued output function \(f \) is:
 \[f: P_1 \quad \ldots \quad P_n \rightarrow B. \]

- Let \(X_i \) be a variable over \(P_i \) and let \(S_i \) be a subset of \(P_i \), then \(X_i^{S_i} \) is a mapping:
 \[
 \begin{array}{c|c}
 0 & \text{if } X_i \in S_i \\
 1 & \text{if } X_i \not\in S_i \\
 \end{array}
 \]
Multiple-Valued Logics

• $X_i^S_i$ is a literal of variable X_i.
• We build SOP formulaes in same way.
• Can define implicants, prime implicant, etc.
• Many laws of Boolean algebras still hold:
 \[f = X_i^S_i f_{X_iS_i} + X_i^{S_i'} f_{X_iS_i'} \]
• **Espresso-mv** uses multi-valued functions.