Essential Prime Implicants

Cube \(p \) is an essential prime implicant of \(f \) if it contains a minterm not contained by any other prime implicant \(p' \) of \(f \).

All essential prime implicants are present in every optimal SOP.
Essential Prime Implicants

- Only $xz, x'y$ are **essential** (exclusively contains minterms $w'xy'z$ and $wxy'z$ of f).

Unate SOPs Revisited

An SOP in which each variable appears only as positive literals or only as negative literals is called **Unate**.

Unate:

$$x_1x_3 + x_1x_3x_4 + x_2x_3 + x_2x_3x_4 = x_1x_3 + x_2x_3$$

Non-Unate: $xz + x'y$ (Note possible consensus)

If F is a unate SOP, $\text{ABS}(F)$ is the complete sum of the function represented by F, and all the primes are essential.
Picking a Subset of the Primes

\[F = yz + x'y + y'z' + xyz + x'z' \]
\[\text{MCF}(F) = x'y'z' + x'yz' + x'yz + xyz + xy'z' \]
\[\text{CS}(F) = x'y + x'z' + y'z' + yz \]

\[
\begin{array}{cccc}
p_1 & p_2 & p_3 & p_4 \\
\text{primes} & x'y'z' & 0 & 1 & 1 & 0 \\
x'y'z & 1 & 0 & 0 & 1 \\
x'yz & 0 & 0 & 1 & 0 \\
xy'z' & 0 & 0 & 0 & 1 \\
xyz & 0 & 0 & 0 & 1 \\
\end{array}
\]

Picking a Subset of the Primes

The implied constraint is
\[F_{\text{Min}} = p_3p_4(p_1 + p_2) = 1 \]

We regard the \(p_i \) as Boolean variables.
\[p_3 = 1 \]

Means that \(p_3 \) is included in the selected subset.

So there are just 2 possible subsets: \(p_3p_4p_1 \) or \(p_3p_4p_1 \)
Picking a Subset of the Primes

\[F = yz + x'y + y'z' + xy'z + x'z' \]

\[\text{MCF}(F) = x'y'z' + x'yz + x'yz + xy'z' + xy'z + xyz \]

\[\text{CS}(F) = x'y + x'z' + y'z' + yz + xy' + xz \]

Cyclic!

No essentials, all primes redundant

<table>
<thead>
<tr>
<th>(p_1)</th>
<th>(p_2)</th>
<th>(p_3)</th>
<th>(p_4)</th>
<th>(p_5)</th>
<th>(p_6)</th>
<th>(p_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x'yz)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(x'yz')</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(x'y'z')</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(xy'z')</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(xy'z)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(xyz)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Generalization

- Logic Minimization is just one of many important problems that can be formulated as a matrix covering problem.
- Others include Technology Mapping, FSM State Minimization with DCs, and many others from various fields.
- So we study this problem intensively.
The Astronaut and the Cookies

Optimal Nutrition:

A good diet should contain adequate amounts of proteins (P), vitamins (V), fats (F), and cookies (C). An astronaut, who must travel light, can choose from five different preparations:

- Preparation 1 (logic variable \(p_1 \)) contains: V and P;
- Preparation 2 (logic variable \(p_2 \)) contains: V and F;
- Preparation 3 (logic variable \(p_3 \)) contains: P and F;
- Preparation 4 (logic variable \(p_4 \)) contains: V;
- Preparation 5 (logic variable \(p_5 \)) contains: C.

Can the astronaut have a balanced diet with only two preparations?

Proteins: \((p_1 + p_3)\), Vitamins: \((p_1 + p_2 + p_4)\),...

The Astronaut and the Cookies

Brute Force Enumeration Approach:

- Encode candidates with binary variables \(p_i \) (like primes)
- Express constraints in POS form (like minterm coverage)
- Convert POS to SOP (enumerate all possibilities)
- Pick “smallest” cube (fewest literals)

\[
1 = (\text{Proteins})(\text{Vitamins})(\text{Fats})(\text{Cookies})
\]
\[
= (p_1 + p_3)(p_1 + p_2 + p_4)(p_2 + p_3)(p_5)
\]
\[
= (p_1 + p_3(p_2 + p_4))(p_2 + p_3)(p_5)
\]
\[
= (p_1)(p_2 + p_3)(p_5) + p_3(p_2 + p_4)(p_5)
\]
\[
= p_1p_2p_5 + p_1p_3p_5 + p_2p_3p_5 + p_3p_4p_5
\]

All possible solutions!
The Trouble with Enumeration

• POS to SOP conversion, like many enumeration algorithms, is in class NP (up to 2^n minterms)

• Thus either it has no efficient (sub-exponential) implementation, or a host of other exhaustively studied problems, like the traveling salesman problem, also have efficient solutions

• So if you find a linear or quadratic algorithm for any of these problems, you’ll be rich and famous

“Effective” Enumeration: Branch and Bound

• Accept the inevitability of exponential worst case performance--”Implicitly Enumerate” the search space

• **Reduce** the problem into simplest equivalent problem--at least one optimum solution remains

• Prune the search space by computing **lower bounds**
Reductions: Essential Columns

- Variables with singleton constraints, like \(p_5 \) in the cookies covering problem, are essential and are present in every optimum solution.

- If Row \(i \) of \(M \) contains a single nonzero in Col \(j \), then add \(j \) to the partial solution and delete all rows of \(M \) with a nonzero in Col \(j \).

- Col \(j \), plus the optimum solution to the reduced matrix, is an optimum solution of the original problem.

Essential Columns: Example

\[
1 = (p_1 + p_3)(p_1 + p_2 + p_4)(p_2 + p_3)(p_5)
\]

\[
\begin{array}{c|ccccc}
 & p_1 & p_2 & p_3 & p_4 & p_5 \\
\hline
R_1 & 1 & 0 & 1 & 0 & 0 \\
R_2 & 1 & 1 & 0 & 1 & 0 \\
R_3 & 0 & 1 & 1 & 0 & 0 \\
R_4 & 0 & 0 & 0 & 0 & 1 \\
\end{array}
\]

\[
\begin{array}{c|ccccc}
 & p_1 & p_2 & p_3 & p_4 \\
\hline
R_1 & 1 & 0 & 1 & 0 \\
R_2 & 1 & 1 & 0 & 1 \\
R_3 & 0 & 1 & 1 & 0 \\
\end{array}
\]

\[
S = \{ p_5 \} \cup S' \]

\(p_5 \), plus an optimum solution (say \(p_1 p_2 \)) to the reduced matrix, is an optimum solution of the original problem.
Reductions: Row Dominance

- Row i of M dominates Row k if every nonzero of Row k is matched by a nonzero of Row i in the same column, that is, $M_{kj} = 1 \implies M_{ij} = 1$, $\forall j$
- Any set of columns that covers Row k will also cover Row i
- Hence dominating rows may be deleted without affecting the size of the optimum solution

- Such deletion may lead to column dominance (later today)

Row Dominance: Example

\[
M = \begin{bmatrix}
1 & 0 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 0
\end{bmatrix}, \quad M' = \begin{bmatrix}
1 & 0 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1
\end{bmatrix}
\]

Note: Row 4 dominates Row 1

$OptSol(M) = OptSol(M')$
Reductions: Column Dominance

- Col \(j \) of \(M \) dominates Col \(k \) if every nonzero of Col \(k \) is matched by a nonzero of Col \(j \) in the same row, that is \(M_{ik} = 1 \implies M_{ij} = 1, \forall i \)
- Any set of columns that contains Col \(j \) will also cover all rows \(i \) covered by Col \(k \).
- Hence \textit{dominated} columns may be deleted without affecting the size of the optimum solution

- Such deletion may lead to row dominance or even reveal new essential columns

\begin{align*}
\text{Column Dominance: Example} \\
&\begin{array}{c|ccccc}
& p_1 & p_2 & p_3 & p_4 & p_5 \\
\hline
1 & 1 & 1 & 0 & 1 & 0 \\
2 & 1 & 1 & 0 & 1 & 0 \\
3 & 0 & 1 & 1 & 0 & 0 \\
4 & 1 & 0 & 1 & 0 & 1 \\
\end{array}
\quad
\begin{array}{c|cc}
& p_1 & p_2 & p_3 \\
\hline
1 & 1 & 0 & 1 \\
2 & 1 & 1 & 0 \\
3 & 0 & 1 & 1 \\
\end{array}
\end{align*}

\[M = 2, \quad M' = 3 \]

Cost\((OptSol(M)) = Cost(\text{OptSol}(M')) \)

- Col 1 \textit{dominates} Cols 4 and 5
- Row 4 \textit{co-dominates} Row 1
- Note \textit{cyclic core}
- Note Solutions including \(p_4 \) or \(p_5 \) are ignored
Matrix Reduction

Procedure REDUCE(M)
1 $EC = COLS_OF_SINGLETON_ROWS(M)$
2 "delete cols in EC and rows with cols in EC"
3 "Add cols in EC to optimum solution"
4 "delete rows which dominate other rows"
5 "delete cols which are dominated by other cols"
6 if($M \neq \emptyset$, and has changed) repeat 1-5

- Essential Column reduction
- Row Dominance reduction
- Column Dominance reduction
- Iterate: Result is unique “Cyclic Core”

Solved Problem 4-14: Reduction

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>\times</td>
<td>\times</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1	1	1	0	0	1
2	0	1	1	1	0
3	0	0	1	1	1
4	1	1	0	1	0

\rightarrow

<table>
<thead>
<tr>
<th>2</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
</table>

1	1	0	1	
2	1	1	0	
3	0	1	1	
4	\times	1	1	0

Cols 2,3 Dominate Row 4 (Co-) Cyclic Core
1,4 Respectively dominates Row 2

Note: No essential columns
\[
\begin{array}{c|ccccc}
 & p_1 & p_2 & p_3 & p_4 & p_5 \\
\hline
1 & 1 & 0 & 1 & 0 & 1 \\
2 & 1 & 1 & 0 & 1 & 0 \\
3 & 0 & 1 & 1 & 0 & 0 \\
\end{array}
\]

\[M = 2 \]

\[
\begin{array}{c|cc}
 & p_1 & p_2 & p_3 \\
\hline
1 & 1 & 0 & 1 \\
2 & 1 & 1 & 0 \\
3 & 0 & 1 & 1 \\
\end{array}
\]

\[M' = \]

\[
\begin{array}{c|cc}
 & p_1 & p_2 & p_3 \\
\hline
1 & 1 & 0 & 1 \\
2 & 1 & 1 & 0 \\
3 & 0 & 1 & 1 \\
\end{array}
\]

Note: Row dominance kills constraints

\[
M: (p_1 + p_3 + p_5)(p_1 + p_2 + p_4)(p_2 + p_3)(p_1 + p_3 + p_4 + p_5) \\
= (p_1 + (p_3 + p_5)(p_2 + p_4))(p_2 + p_3) \\
= p_1(p_2 + p_3) + (p_3 + p_5)(p_2 + p_3) \\
= p_1p_2 + p_1p_3 + p_2p_3 + p_3p_4 + p_2p_5 \\
\]

\[
M': (p_1 + p_3)(p_1 + p_2)(p_2 + p_3) \\
= (p_1 + p_2p_3)(p_2 + p_3) = p_1p_2 + p_1p_3 + p_2p_3 \\
\]

Note: Col dominance kills alternative solutions

\[
\begin{array}{c|cccccc}
 & p_1 & p_2 & p_3 & p_4 & p_5 & p_6 \\
\hline
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
2 & 0 & 1 & 0 & 1 & 0 & 0 \\
3 & 0 & 0 & 0 & 0 & 1 & 1 \\
4 & 1 & 0 & 1 & 0 & 1 & 1 \\
\end{array}
\]

Lower Bounds

- Note rows 1,2,3 are “column disjoint”, that is, the nonzero column sets \{1,3\},\{2,4\},\{5,6\} are pair-wise disjoint
- Thus at least 3 columns are required to cover the rows of \(M\)
- Thus if we somehow find a solution of size 3, we can take it and quit --- it is an optimum solution.
Lower Bounds

- Row i of M is disjoint from Row k if no nonzero of Row i is matched by a nonzero of Row k in the same column, and conversely. That is, $M_{ij} = 1 \Rightarrow M_{kj} = 0$, $M_{kj} = 1 \Rightarrow M_{ij} = 0$, $\forall j$
- m distinct columns are required to cover m pair-wise disjoint rows
- Hence the cost of covering a matrix that contains m pair-wise disjoint rows is at least m
- Lower bounds can prune vast regions of the search

Quick Lower Bound Algorithm

Procedure MIS QUICK(M)
1 $MIS = \emptyset$
2 do {
3
4 $i = $CHOOSE SHORTEST ROW($M$)
5 $MIS = MIS \cup \{i\}$
6 $M = $DELETE INTERSECTING ROWS(M, i)
7 } while(||$M|| > 0) continue
8 return row set MIS

This is a cheap heuristic: Finding “best” lower bound can be harder than solving the original covering problem
Procedure MIS_QUICK(M)
1 $MIS = \emptyset$
2 do {
3 \hspace{1em} $i = \text{CHOOSE_SHORTEST_ROW}(M)$
4 \hspace{1em} $MIS = MIS \cup \{i\}$
5 \hspace{1em} $M = \text{DELETE_INTERSECTING_ROWS}(M,i)$
6 } while($|M| > 0$) continue
7 return row set MIS

Example

1 \times 1 1 0 0 0 0 $\leftarrow MIS = \{1\}$
2 \times 0 1 1 0 0 0
3 0 0 1 1 0 0 \rightarrow 3 \times 0 0 1 1 0 0 $\leftarrow MIS = \{1,3\}$
4 0 0 0 1 1 0 4 \times 0 0 0 1 1 0
5 0 0 0 0 1 1 5 0 0 0 0 1 1
6 \times 1 0 0 0 0 1 5 \times 0 0 0 0 1 1 $\leftarrow MIS = \{1,3,5\}$

Example Showing Lower Bounding

Initial upper bound: $U = 6 + 1 = 7$

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- Cyclic Core: no essential columns, Row dominance, or Column dominance
- Row 1 “Intersects” rows 2-4

MIS = \{1\}, $L = 0 + 1 = 1$

Split on Column 1
Example Showing Lower Bounding

Recursive Call for $p_1 = 1$

\[
\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
\times \\
1 & 1 & 0 & 1 & 0 & 1 & 0 & 2 & 3 & 4 & 5 & 6 \\
2 & 1 & 0 & 0 & 1 & 0 & 1 & p_1 = 1 & \times \times \times \\
3 & 0 & 1 & 1 & 0 & 0 & 1 & \Rightarrow & 3 & 1 & 1 & 0 & 0 & 1 \\
4 & 0 & 1 & 0 & 1 & 1 & 0 & 4 & 1 & 0 & 1 & 1 & 0 \\
\end{array}
\]

currentSol = \{p_1\}, \ EC = \{p_2\}, \ U = 1+1 = 2

\{p_1, p_2\} is a best solution which includes p_1.

Example Showing Lower Bounding

Recursive Call for $p_1 = 0$

\[
\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
\times \\
1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \ \\
2 & 1 & 0 & 0 & 1 & 0 & 1 & p_1 = 0 & 2 & 0 & 0 & 1 & 0 & 1 \\
3 & 0 & 1 & 1 & 0 & 0 & 1 & \Rightarrow & 3 & 1 & 1 & 0 & 0 & 1 \\
4 & 0 & 1 & 0 & 1 & 1 & 0 & 4 & 1 & 0 & 1 & 1 & 0 \\
\end{array}
\]

Cyclic core

EC = \{ \}, \ MIS = \{1,2\}, \ L = 0 + 2 = 2 \geq U
Procedure BCP($M, U, currentSol$) {
 1. $(M, currentSol) = \text{REDUCE}(M, currentSol)$
 2. if (terminalCase(M)) { \hspace{1cm} $\|M\| = 0$
 3. \hspace{1cm} if (COST($currentSol$) < U) {
 \hspace{2cm} $U = \text{COST}(currentSol)$
 \hspace{2cm} \text{return} (currentSol)
 4. \hspace{1cm} else return("no (better) solution (in this subspace)")
 5. }
 6. \hspace{1cm} $L = \text{LOWER_BOUND}(M, currentSol)$
 \hspace{1cm} if ($L \geq U$) return("no (better) solution (in this subspace)")
 7. \hspace{1cm} $x_i = \text{CHOOSE_VAR}(M)$ \hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} longest column
 8. \hspace{1cm} $S^1 = \text{BCP}(M_{x_i}, U, currentSol \cup \{x_i\})$
 9. \hspace{1cm} if (COST(S^1) = L) return(S^1)
 \hspace{1cm} $S^0 = \text{BCP}(M_{x_i}, U, currentSol)$
 10. \hspace{1cm} \text{return \ BEST_SOLUTION \ (S^1, S^0)}
}

Procedure BCP($M, U, currentSol$) {
 1. $(M, currentSol) = \text{REDUCE}(M, currentSol)$
 2. if (terminalCase(M)) { \hspace{1cm} $\|M\| = 0$
 3. \hspace{1cm} if (COST($currentSol$) < U) {
 \hspace{2cm} $U = \text{COST}(currentSol)$
 \hspace{2cm} \text{return} (currentSol)
 4. \hspace{1cm} else return("no (better) solution (in this subspace)")
 5. }
 6. \hspace{1cm} $L = \text{LOWER_BOUND}(M, currentSol)$
 \hspace{1cm} if ($L \geq U$) return("no (better) solution (in this subspace)")
 7. \hspace{1cm} $p_1 = 1$ \hspace{1cm} $p_2 = 1$ \hspace{1cm} $p_3 = 0$ \hspace{1cm} $p_4 = 1$ \hspace{1cm} $p_5 = 1$
 \hspace{1cm} $p_1 = 1$ \hspace{1cm} $p_2 = 1$ \hspace{1cm} $p_3 = 0$
 \hspace{1cm} $M = \begin{bmatrix}
 1 & 1 & 0 & 1 & 0 & 1
 \end{bmatrix}
 \begin{bmatrix}
 2 & 1 & 1 & 0 & 1 & 0
 \end{bmatrix}$
 \hspace{1cm} $M' = \begin{bmatrix}
 2 & 1 & 1 & 0
 \end{bmatrix}$
 \hspace{1cm} $3 \times 1 \hspace{1cm} 0 \hspace{1cm} 1 \hspace{1cm} 1 \hspace{1cm} 1$
 8. \hspace{1cm} $3 \times 1 \hspace{1cm} 0 \hspace{1cm} 1 \hspace{1cm} 1 \hspace{1cm} 1$
 9. \hspace{1cm} $U \times 1 \hspace{1cm} 0 \hspace{1cm} 1 \hspace{1cm} 1 \hspace{1cm} 1$
 10. \hspace{1cm} $U = 3$
 11. \hspace{1cm} $U = 5 + 1 = 6$
 12. \hspace{1cm} $L = \#\text{ESS} + |MIS| = 0 + 1 = 1$ \hspace{1cm} (or 2)
}

For cyclic problems
Recursion Tree

Solved Problem 4-14: “Splitting”

Row counts

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MIS = {1}, U = 6

L = 0 + |MIS| = 0 + 1 = 1

¬(L ≥ U) (So recur)

Column counts

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>2</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Splitting Variable Heuristic: Pick “long” columns which cover many “short” rows
Picking the “Splitting Variable”

1. \((M, currentSol) = \text{REDUCE}(M, currentSol)\)

 if (terminalCase(M))

 \{ \)

 if (COST(currentSol) < U) \{ \)

 \(
 U = \text{COST}(\text{currentSol})
 \)

 return (currentSol) \} \}

 \}}

else return ("no (better) solution") \} \}

2. \(L = \text{LOWER_BOUND}(M, currentSol)\)

3. if (L ≥ U) return ("no (better) solution")

4. \(x_i = \text{CHOOSE_VAR}(M)\)

5. \(S^l = \text{BCP}(M_{x_i}, U, currentSol \cup \{x_i\})\)

6. if (COST(S^l) = L) return (S^l)

7. \(S^0 = \text{BCP}(M_{x_i}, U, currentSol)\)

8. return BEST_SOLUTION \((S^l, S^0)\)

Solved Problem 14: Binary Recursion

\[
\begin{array}{ccc}
2 & 4 & 5 \\
\times & & \\
1 & 1 & 0 & 1 \\
\Rightarrow & 3 & 1 & 1 \\
2 & 0 & 1 & 1
\end{array}
\]

\[
\begin{array}{ccc}
2 & 4 & 5 \\
\times & & \\
1 & 1 & 0 & 1 & \Rightarrow & 1 & 0 & 1 \\
2 & 1 & 1 & 0 & \Rightarrow & 2 & 1 & 0 \\
3 & 0 & 1 & 1 & \Rightarrow & 3 & 1 & 1
\end{array}
\]

\[
\begin{array}{ccc}
\text{currentSol} = \{2\}, \\
\text{EC} = \{4\}, \\
U = 1 + 1 = 2
\end{array}
\]

\[
\begin{array}{ccc}
\text{currentSol} = \{\}, \\
\text{EC} = \{4,5\}, \\
U = 0 + 2 = 2
\end{array}
\]
13x11 Example

MIS={1,3,5,7}, \ L=0+4=4

忽略了选择最长列的启发式：选择列1

M^1_0 \ \ \text{Drop Col 1}

M^1_1 \ \ \text{Drop Col 1, and}
\ \ \text{Rows 1,4,12}

13x11 Example

Cols 2,4 are dominated, so
Col 3 becomes essential

MIS={7,9}, \ L=2+2 = 4

Pick longest column, Col 5

M^2_0 \ \ \text{Drop Col 5}

M^2_{00} \ \ \text{Drop Col 5, and}
\ \ \text{Rows 5,9-13}
Cyclic (takes 2 Cols),
Cost = 3+2=5=U
\[p_1, p_3, p_5 \quad p_6, p_7 \]

\(M_{11}^2 \)
\[
\begin{array}{cccc}
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 \\
\end{array}
\]

\(M_{10}^2 \)
\[
\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
\end{array}
\]

\(S^1 = \text{BCP}(M_{11}^2, U, \text{currentSol} \cup \{x_i\}) \)
\(S^0 = \text{BCP}(M_{10}^2, U, \text{currentSol}) \)

\(S^1 = \text{BCP}(M_{11}^2, U, \text{currentSol}) \)

\(S^0 = \text{BCP}(M_{10}^2, U, \text{currentSol}) \)

\(\text{return} \quad \text{BEST_SOLUTION} \quad (S^1, S^0) \)

MIS=\{5, 10, 11\}, \quad L=2+3 = 5

\((M, \text{currentSol}) = \text{REDUCE}(M, \text{currentSol}) \)
\(\text{if} \quad \text{(terminalCase}(M)) \quad \{ \)
\(\quad \text{if} \quad \text{(COST}(\text{currentSol}) < U) \quad \{ \)
\(\quad \quad \text{U} = \text{COST}(\text{currentSol}) \)
\(\quad \quad \text{return} \quad \text{currentSol} \quad \} \)
\(\quad \text{else return} \quad \text{"no (better) solution"} \quad \} \)
\(\quad \text{L} = \text{LOWER_BOUND}(M, \text{currentSol}) \)
\(\quad \text{if} \quad (L \geq U) \quad \text{return} \quad \text{"no (better) solution"} \)
\(x_i = \text{CHOOSE_VAR}(M) \)
\(S^1 = \text{BCP}(M_{x_i}, U, \text{currentSol} \cup \{x_i\}) \)
\(S^0 = \text{BCP}(M_{x_i}, U, \text{currentSol}) \)
\(\text{return} \quad \text{BEST_SOLUTION} \quad (S^1, S^0) \)
Example Summary

5 Recursive Calls
5 Reductions
5 Lower Bounds
3 Splitting Choices
Minimizing Weighted Cost

• To make cost sensitive to transistor count, set the “weight” of a prime implicant to its literal count

\[
\text{COST}(x'y) = 2, \ \text{COST}(uvw'yz') = 6
\]

• Thus a dominated column is only remove if the dominating column has lower (or the same) cost

• The rest of BCP is unaffected
• Theorem 8.2.3, Page 339