MULTIPLE-LEVEL LOGIC OPTIMIZATION

©Giovanni De Micheli

Stanford University

Motivation

- Multiple-level networks:
 - Semi-custom libraries.
 - Gates versus macros (PLAs):
 » More flexibility.
 » Better performance.
- Applicable to a variety of designs.

Outline

- Representations.
- Taxonomy of optimization methods:
 - Goals: area/delay.
 - Algorithms: algebraic/Boolean.
 - Rule-based methods.
- Algebraic methods.

Circuit modeling

- Logic network:
 - Interconnection of logic functions.
 - Hybrid structural/behavioral model.
- Bound (mapped) networks:
 - Interconnection of logic gates.
 - Structural model.
Example of network

\[p = ce + de \]
\[q = a + b \]
\[r = p + a' \]
\[s = r + b' \]
\[t = ac + ad + bc + bd + e \]
\[u = q'c + qc' + qc \]
\[v = d' + bd + e'd + ae' \]
\[w = v \]
\[x = s \]
\[y = t \]
\[z = u \]
Network optimization

- Minimize area estimate:
 - subject to delay constraints.
- Minimize maximum delay:
 - subject to area constraints.
- Maximize testability.
- Minimize power.

Problem analysis

- Multiple-level optimization is hard.
- Exact methods:
 - Exponential complexity.
 - Impractical.
- Approximate methods:
 - Heuristic algorithms.
 - Rule-based methods.

Estimation

- Area:
 - Number of literals.
 - Number of functions/gates.
- Delay:
 - Number of stages.
 - Refined gate delay models.
 - Sensitizable paths.

Strategies for optimization.

- Improve circuit by step-wise transformations:
 - Modify parts of the network one at a time.
 - Circuit transformations.
- Preserve network behavior.
- Methods differ in:
 - Types of transformations.
 - Selection and order of transformations.
Example elimination

- Eliminate one function from the network.
- Perform variable substitution.
- Example:
 - \(s = r + b' \); \(r = p + a' \)
 - \(s = p + a' + b' \).

Example decomposition

- Break one function into smaller ones.
- Introduce new vertices in the network.
- Example:
 - \(v = a'd + bd + c'd + a'c' \).
 - \(j = a' + b + c'; v = jd + a'c' \).
- Find a common sub-expression of two (or more) expressions.

- Extract sub-expression as new function.

- Introduce new vertex in the network.

- Example:
 - $p = ac + de$; $t = ac + ad + bc + bd + c$;
 - $p = (c + d)e$; $t = (c + d)(a + b) + e$;
 - $k = c + d$; $p = ke$; $t = ka + kb + c$;

- Example:
 - $u = q'c + qc' + qc$; $u = q + c$;
• Simplify a local function by using an additional input that was not previously in its support set.

• Example:
 - $t = ka + kb + c$.
 - $\Rightarrow \quad t = kq + c$
 - Because $q = a + b$.

Example sequence of transformations

$$
j = d' + b + c' \\
k = c + d \\
q = a + b \\
s = k + d' + b' \\
t = kq + e \\
u = q + c \\
v = jd + ae'
$$

Optimization approaches

- **Algorithmic approach:**
 - Define an algorithm for each transformation type.
 - Algorithm is an operator on the network.

- **Rule-based approach:**
 - Rule-data base:
 - Set of pattern pairs.
 - Pattern replacement driven by rules.
Algorithmic approach

- Each operator has well-defined properties:
 - Heuristic methods still used.
 - Weak optimality properties.

- Sequence of operators:
 - Defined by scripts.
 - Based on experience.

Example elimination algorithm

```plaintext
ELIMINATE( G_n(V, E), k) {
    repeat {
        v_x = selected vertex with value below k;
        if (v_x = ∅) return;
        replace x by f_x in the network;
    }
}
```

Example MIS/SIS rugged script

- sweep; eliminate -1
- simplify -m nocomp
- eliminate -1
- sweep; eliminate 5
- simplify -m nocomp
- resub -a
- f_x
- resub -a; sweep
- eliminate -1; sweep
- full-simplify -m nocomp
Boolean and algebraic methods

- **Boolean methods:**
 - Exploit properties of logic functions.
 - Use *don’t care* conditions.
 - Complex at times.
- **Algebraic methods:**
 - View functions as *polynomials*.
 - Exploit properties of polynomial algebra.
 - Simpler, faster but weaker.

Boolean substitution:
- $h = a + bcd + e; q = a + cd$
- $\Rightarrow h = a + bq + e$
- Because $a + bq + e = a + b(a + cd) + e = a + bcd + e$.

Algebraic substitution:
- $t = ka + kb + e$.
- $\Rightarrow t = kq + e$
- Because $q = a + b$.

Algebraic model

- **Boolean algebra:**
 - Complement.
 - Symmetric distribution laws.
 - *Don’t care* sets.
- **Algebraic methods:**
 - Boolean functions \rightarrow polynomials.
 - Expressions (*sum of product* forms).

Example

- **Boolean substitution:**
 - $h = a + bcd + e; q = a + cd$
 - $\Rightarrow h = a + bq + e$
 - Because $a + bq + e = a + b(a + cd) + e = a + bcd + e$.

Algebraic division

- Given two algebraic expressions:
 - $f_{\text{quotient}} = f_{\text{dividend}}/f_{\text{divisor}}$ when:
 - $f_{\text{dividend}} = f_{\text{divisor}} \cdot f_{\text{quotient}} + f_{\text{remainder}}$
 - $f_{\text{divisor}} \cdot f_{\text{quotient}} \neq 0$
 - and the support of f_{divisor} and f_{quotient} is disjoint.
Example

- **Algebraic division:**
 - Let \(f_{\text{dividend}} = ac + ad + bc + bd + e \) and \(f_{\text{divisor}} = a + b \).
 - Then \(f_{\text{quotient}} = c + d \) and \(f_{\text{remainder}} = e \).
 - Because \((a + b) \cdot (c + d) + e = f_{\text{dividend}} \) and \(\{a, b\} \cap \{c, d\} = \emptyset \).

- **Non-algebraic division:**
 - Let \(f_i = a + bc \) and \(f_j = a + b \).
 - Then \((a + b) \cdot (a + c) = f_i \) but \(\text{sup}(f_j) \cap \{a, c\} \neq \emptyset \).

An algorithm for division

ALGEBRAIC\text{DIVISION}(A, B)

\[
\begin{align*}
\text{for} \ (i = 1 \ \text{to} \ n) \ \{ \\
\quad D = \{C_i^A \text{ such that } C_j^A \supseteq C_i^B \}; \\
\quad \text{if} \ (D == \emptyset) \ \text{return}(\emptyset, A); \\
\quad D_i = D \ \text{with var. in } \text{sup}(C_i^B) \ \text{dropped}; \\
\quad \text{if} \ i = 1 \\
\quad \quad Q = D_i; \\
\quad \text{else} \\
\quad \quad Q = Q \cap D_i; \\
\quad \}\ \\
R = A - Q \times B; \\
\text{return}(Q, R);
\end{align*}
\]

Example

\(f_{\text{dividend}} = ac + ad + bc + bd + e \); \(f_{\text{divisor}} = a + b \):

- \(A = \{ac, ad, bc, bd, e\} \) and \(B = \{a, b\} \).
- \(i = 1 \):
 - \(C_i^B = a, D = \{ac, ad\} \) and \(D_1 = \{c, d\} \).
 - Then \(Q = \{c, d\} \).
- \(i = 2 = n \):
 - \(C_i^B = b, D = \{bc, bd\} \) and \(D_2 = \{c, d\} \).
 - Then \(Q = \{c, d\} \cap \{c, d\} = \{c, d\} \).

- Result:
 - \(Q = \{c, d\} \) and \(R = \{e\} \).
 - \(f_{\text{quotient}} = c + d \) and \(f_{\text{remainder}} = e \).
Theorem

Given f_i and f_j, then f_i/f_j is empty when:
- f_j contains a variable not in f_i.
- f_j contains a cube whose support is not contained in that of any cube of f_i.
- f_j contains more terms than f_i.
- The count of any variable in f_j than in f_i.

Substitution algorithm

SUBSTITUTE($G_n(V,E)$){
 for ($i = 1, 2, \ldots |V|$) {
 for ($j = 1, 2, \ldots |V|; j \neq i$) {
 A = set of cubes of f_i;
 B = set of cubes of f_j;
 if (A, B pass the filter test) {
 $(Q, R) = ALGEBRAIC_DIVISION(A, B)$
 if ($Q \neq 0$) {
 $f_{quotient}$ = sum of cubes of Q;
 $f_{remainder}$ = sum of cubes of R;
 if (substitution is favorable)
 $R = j \cdot f_{quotient} + f_{remainder}$;
 }
 }
 }
 }
}

Substitution

Consider expression pairs.

Apply division (in any order).

If quotient is not void:
- Evaluate area/delay gain
 - Substitute $f_{dividend}$ by $j \cdot f_{quotient} + f_{remainder}$
 where $j = f_{divisor}$.
- Use filters to reduce divisions.

Extraction

Search for common sub-expressions:
- Single-cube extraction: monomial.
- Multiple-cube (kernel) extraction.

Search for appropriate divisors.
Definitions

- **Cube-free expression:**
 - Cannot be factored by a cube.

- **Kernel** of an expression:
 - Cube-free **quotient** of the expression divided by a cube, called **co-kernel**.

- **Kernel set** \(K(f) \) of an expression:
 - Set of kernels.

Theorem

(Brayton and McMullen)

- Two expressions \(f_a \) and \(f_b \) have a common multiple-cube divisor \(f_d \) if and only if:
 - there exist kernels \(k_a \in K(f_a) \) and \(k_b \in K(f_b) \) such that \(f_d \) is the sum of 2 (or more) cubes in \(k_a \cap k_b \).

- **Consequence:**
 - If kernel intersection is void, then the search for common sub-expression can be dropped.

Example

\[f_x = ace + bce + de + g \]

- Divide \(f_x \) by \(a \). Get \(ce \). Not cube free.
- Divide \(f_x \) by \(b \). Get \(ce \). Not cube free.
- Divide \(f_x \) by \(c \). Get \(ae + be \). Not cube free.
- Divide \(f_x \) by \(ce \). Get \(a + b \). Cube free. **Kernel!**
- Divide \(f_x \) by \(d \). Get \(e \). Not cube free.
- Divide \(f_x \) by \(e \). Get \(ac + bc + d \). Cube free. **Kernel!**
- Divide \(f_x \) by \(g \). Get 1. Not cube free.
- Expression \(f_x \) is a kernel of itself because cube free.
- \(K(f_x) = \{ (a + b); (ac + bc + d); (ace + bce + de + g) \} \).

Example

\[f_x = ace + bce + de + g \]
\[f_y = ad + bd + cde + ge \]
\[f_z = abc \]

- \(K(f_x) = \{ (a + b); (ac + bc + d); (ace + bce + de + g) \} \).
- \(K(f_y) = \{ (a + b + ac); (cd + g); (ad + bd + cde + ge) \} \).
- The kernel set of \(f_x \) is empty.
- Select intersection \((a + b) \)

\[f_w = a + b \]
\[f_z = abc \]
Kernel set computation

- Naive method:
 - Divide function by elements in power set of its support set.
 - Weed out non cube-free quotients.

- Smart way:
 - Use recursion:
 * Kernels of kernels are kernels.
 - Exploit commutativity of multiplication.

Recursive kernel computation

Simple algorithm

```plaintext
R_KERNELS(f) {
  K = 0;
  foreach variable x \in sup(f) {
    if |CUBES(f, x)| \geq 2 {
      f^C = largest cube containing x,
      such that CUBES(f, C) = CUBES(f, x);
      K = K \cup R_KERNELS(f/f^C);
    }
  }
  K = K \cup f;
  return(K);
}

CUBES(f, C) {
  return the cubes of f whose support includes C;
}
```

Analysis

- Some computation may be redundant:
 - Example:
 * Divide by a and then by b.
 * Divide by b and then by a.
 - Obtain duplicate kernels.

- Improvement:
 - Keep a pointer to literals used so far.
Example

\[f = ace + bce + de + g \]

- Literals \(a\) or \(b\). No action required.
- Literal \(c\). Select cube \(\alpha\):
 - Recursive call with arguments: \((ace + bce) / \alpha = a + b\);
 pointer \(j = 3 + 1\).
 - Call considers variables \(\{d, e, g\}\). No kernel.
 - Add \(a + b\) to the kernel set at the last step.
- Literal \(d\). No action required.
- Select cube \(e\):
 - Recursive call with arguments: \((ac + bc + d)\) and pointer \(j = 5 + 1\).
 - Call considers variable \(\{g\}\). No kernel.
 - Add \(ac + bc + d\) to the kernel set at the last step.
- Literal \(e\). No action required.
- Add \(ac + bce + de + g\) to the kernel set.
- \(K = \{(ac + bce + de + g), (ac + bc + d), (a + b)\}\).

Matrix representation of kernels

- Boolean matrix:
- Rectangle \((R, C)\):
 - Subset of rows and columns with all entries equal to 1.
- Prime rectangle:
 - Rectangle not inside any other rectangle.
- Co-rectangle \((R, C')\) of a rectangle \((R, C)\):
 - \(C'\) are the columns not in \(C\).
- A co-kernel corresponds to a prime rectangle with at least two rows.

Example

\[f_x = ace + bce + de + g \]

<table>
<thead>
<tr>
<th>cube</th>
<th>var (R \backslash C)</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
<th>(e)</th>
<th>(g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ace</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>bce</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>de</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(g)</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

- Rectangle (prime): \(\{1, 2\}, \{3, 5\}\)
 - Co-kernel \(ce\).
- Co-rectangle: \(\{1, 2\}, \{1, 2, 4, 6\}\).
 - Kernel \(a + b\).
Single-cube extraction

- Form auxiliary function:
 - Sum of all local functions.

- Form matrix representation:
 - A rectangle with two rows represents a common cube.
 - Best choice is a prime rectangle.

- Use function ID for cubes:
 - Cube intersection from different functions.

Cube extraction algorithm

\[
CUBE_EXTRACT(G_n(V,E))\{
\text{\textbf{while} (some favorable \underline{\text{common \ cube}} exist) \{} \\
\phantom{{\text{\textbf{while} (some favorable \underline{\text{common \ cube}} exist) \{} } C = \text{select common cube to extract}; \\
\phantom{{\text{\textbf{while} (some favorable \underline{\text{common \ cube}} exist) \{} } \text{Generate new label } l; \\
\phantom{{\text{\textbf{while} (some favorable \underline{\text{common \ cube}} exist) \{} } \text{Add } v_l \text{ to the network with expression } f_l = f^C; \\
\phantom{{\text{\textbf{while} (some favorable \underline{\text{common \ cube}} exist) \{} } \text{Replace all functions } f, \text{ where } f_l \text{ is a divisor,} \\
\phantom{{\text{\textbf{while} (some favorable \underline{\text{common \ cube}} exist) \{} } \text{by } l : \text{quotient} + \text{remainder}; \\
\text{\textbf{endwhile}}; \\
\text{\textbf{end}}}
\]

Example

- Expressions:
 - \(f_x = ace + bce + de + g \)
 - \(f_y = cde + b \)

- Auxiliary function:
 - \(f_{aux} = ace + bce + de + g + cde + b \)

- Matrix:

<table>
<thead>
<tr>
<th>(\text{cube})</th>
<th>(\text{var})</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
<th>(e)</th>
<th>(g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ace)</td>
<td>(x)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(bce)</td>
<td>(x)</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(de)</td>
<td>(x)</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(g)</td>
<td>(x)</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(cde)</td>
<td>(s)</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(b)</td>
<td>(s)</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Prime rectangle: \(\{(1, 2, 5), (3, 5)\} \)

- Extract cube \(ce \).

Multiple-cube extraction
Multiple-cube extraction

- We need a kernel/cube matrix.
- Relabeling:
 - Cubes by new variables.
 - Kernels by cubes.
- Form auxiliary function:
 - Sum of all kernels.
- Extend cube intersection algorithm.

Example (2)

- \(f_{\text{aux}} = x_\alpha x_b + x_\omega x_b + x_\alpha x_\beta x_d \).
- Co-kernel: \(x_\alpha x_b \).
 - \(x_\alpha x_b \) corresponds to kernel intersection \(a + b \).
 - Extract \(a + b \) from \(f_p \) and \(f_q \).

Example

- \(f_p = ace + bce + de \).
 - \(K(f_p) = \{(a + b)\} \).
- \(f_q = ace + b + d \).
 - \(K(f_q) = \{(a + b); (ac + be + d)\} \).
- Relabeling:
 - \(x_a = a; x_b = b; x_\alpha = ae; x_\beta = be; x_c = d \);
 * \(K(f_p) = \{x_\alpha, x_b\} \)
 * \(K(f_q) = \{x_\alpha, x_b; x_\omega, x_\beta, x_d\} \).

Kernel extraction algorithm

\(\text{KERNEL}_{\text{EXTRACT}}(G(V, E), n, k) \)\{
 while (some favorable common kernel intersection exist) \{
 Compute kernel set of level \(\leq k \);
 for \(i = 1 \) to \(n \) \{
 Compute kernel intersections; \(f \) = select kernel intersection to extract; Generate new label \(l \);
 Add \(v_j \) to the network with expression \(f_l = f \);
 Replace all functions \(f \) where \(f_j \) is a divisor
 by \(l \cdot f_{\text{quotient}} + f_{\text{remainder}} \);
 \}
 \}
\}
Decomposition

\[x = ace + bce + de + g \]

\[x = te + g \]

\[s = a + b \]

\[t = sc + dt = ac + bc + d \]

Different ways:

- Method of Ashenhurst and Curtis.
- NAND/NOR decomposition.

Kernel-based decomposition:

- Divide expression recursively.

Example

\[f_x = ace + bce + de + g \]

- Select kernel \(ac + bd + d \).
- Decompose: \(f_x = te + g \); \(f_t = ac + bc + d \).
- Recur on the quotient \(f_t \):
 - Select kernel \(a + b \):
 - Decompose: \(f_t = a + b \); \(f_s = a + b \);

Decomposition algorithm

\[DECOMPOSE(G_n(V, E) , k)\{
 \text{repeat } \{
 v_x = \text{selected vertex with expression whose size is above } k;
 \text{if } (v_x = \emptyset) \text{ return;}
 \text{decompose expression } f_x;
 \}
}\]
Summary

Algebraic transformations

- View Boolean functions as algebraic expression.
- Fast manipulation algorithms.
- Some optimality lost, because Boolean properties are neglected.
- Useful to reduce large networks.