MULTIPLE-LEVEL LOGIC OPTIMIZATION

Giovanni De Micheli
Stanford University

Outline

- Algebraic methods.
- Rule-based methods.
- Taxonomy of optimization methods:
 - Goals: area/delay.
 - Algorithms: algebraic/Boolean.
- Representations.

GDM
Motivation

Circuit modeling

- Structural model.
 - Interconnection of logic gates.

 Bound (mapped) networks:

- Hybrid structural/behavioral model.
 - Interconnection of logic functions.

 Logic network:

Motivation

- Applicable to a variety of designs.
 • Better performance.
 • More flexibility.

- Gates versus macros (PLAs):

- Semi-custom libraries:
 • Multiple-level networks:
\[n = z \]
\[i = h \]
\[s = x \]
\[a = m \]
\[p^p + p^q + pq + p^r = a \]
\[p + q + c + d = n \]
\[e + pq + cq + pq + cd = i \]
\[f + s = a \]
\[p + d = i \]
\[q + v = b \]
\[ep + ce = d \]
\[
\begin{bmatrix}
\varphi + q + a \\
pq + c + q + pv + \varphi q \\
p + c + q + p + q v \\
v p + p c + pq + qv
\end{bmatrix} = 1
\]
Network optimization

Minimize area estimate:
- subject to delay constraints.

Minimize maximum delay:
- subject to area constraints.

Maximize testability.

Minimize power.

Estimation:
- Sensitizable paths.
- Refined gate delay models.
- Number of stages.

Delay:
- Number of functions/gates.
- Number of literals.

Area:

- Sensitizable paths.
- Refined gate delay models.
- Number of stages.

Delay:
- Number of functions/gates.
- Number of literals.
Problem analysis

Multiple-level optimization is hard.

Exact methods:
- Exponential complexity.
- Impractical.

Approximate methods:
- Heuristic algorithms.
- Rule-based methods.

Strategies for optimization:

- Selection and order of transformations.
- Types of transformations.
- Methods differ in:
 - Preserve network behavior.
 - Circuit transformations.
 - Modify parts of the network one at a time.

- Improve circuit by step-wise transformations.

<table>
<thead>
<tr>
<th>Selection and order of transformations</th>
<th>Types of transformations</th>
<th>Methods differ in:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preserve network behavior</td>
<td>Circuit transformations</td>
<td>Modify parts of the network one at a time.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Improve circuit by step-wise transformations.</td>
</tr>
</tbody>
</table>
Perform variable substitution.

Example:

\[f + p + d = s \iff - \]

\[p + d = j \iff f + j = s \iff - \]

Eliminate one function from the network.

Example
Example of decomposition:

\[\rho v + p \ell = a \]

\[\rho + q + p = \ell \]

\[\rho v + p \rho + pq + pr = a \]

Example:

- Break one function into smaller ones.
- Introduce new vertices in the network.
Example extraction

1. Find a common sub-expression of two or more expressions.
2. Extract sub-expression as new function.
3. Introduce new vertex in the network.

Example:

\[r = p + a' \]
\[s = r + b' \]
\[t = ac + ad + bc + bd + e \]
\[u = q'c + qc' + qc \]
\[q = a + b \]

Example:

\[x + y + qa = t \]
\[x = d \]
\[p + c = q \]

Example:

\[(q + v)(p + c) = t \]
\[(p + c) = d \]
\[x + p q + q e + p q + q e + p q + a c + d e + c e = d \]

Example:

Introduce new vertex in the network.

Extract sub-expression as new function.

(or more) expressions.

Find a common sub-expression of two

Example extraction

Example
Example simplification

- $c + b = n \iff \neg c \land \neg b \land \neg n$
- $u = q'c + qc' + qc \land q = a + b$
- $p = ce + de$
- $w = a'd + bd + c'd + ae'$

- Example:
 - Simplify a local function.
Simplify a local function by using an additional input that was not previously in its support set.

Example:

\[r = p + a' \]
\[s = r + b' \]
\[q = a + b \]
\[u = q'c + qc' + qc \]
\[k = c + d \]
\[t = ka + kb + e \]
\[p = ke \]
\[v = a'd + bd + c'd + ae' \]
Optimization approaches

- **Algorithmic approach:**
 - Define an algorithm for each transformation type.
 - Algorithm is an operator on the network.

- **Rule-based approach:**
 - Rule-base: Set of pattern pairs.
 - Define an algorithm for each transformation type.

Example

<table>
<thead>
<tr>
<th>q + b + c' = a</th>
</tr>
</thead>
<tbody>
<tr>
<td>e + b + a = n</td>
</tr>
<tr>
<td>q + p + aq = s</td>
</tr>
<tr>
<td>q + a = b</td>
</tr>
<tr>
<td>p + c = q</td>
</tr>
<tr>
<td>p + q + p = f</td>
</tr>
</tbody>
</table>
Algorithmic approach

- Heuristic methods still used.
- Weak optimality properties.
- Heuristic methods still used.
- Each operator has well-defined properties.

Example

Eliminate expressions if the increase in literals does not exceed the threshold.

Set a threshold \(t \) (usually 0).

Examine all expressions.

Example elimination algorithm:

Based on experience.

Defined by scripts.

Sequence of operators:

- Each operator has well-defined properties.
elimination algorithm

Example

repeat

c

GDM

sweep; eliminate -1

simplify-mnocomp

eliminate -1

result - a: sweep

result - a

eliminate -1

simplify-mnocomp

result - a

sweep: eliminate 5

eliminate -1

simplify-mnocomp

sweep: eliminate -1

eliminate -1

result - a

eliminate -1

full-simplify-mnocomp

eliminate -1: sweep

result - a: sweep
Boolean and algebraic methods

- Exploit properties of logic functions.
- Use don't care conditions.
- Complex at times.
- Simpler, faster but weaker.

GDM

Boolean methods:

- Exploit properties of polynomial algebra.

Algebraic methods:

- View functions as polynomials.

Example

\[q + v = b \]

Because

\[e + bq = 1 \]

\[e + v = 1 \]

Algebraic substitution:

\[\frac{e + v}{e} = (p + v)(p + v)q + v = e + bq + v = e + bq + v = q \]

Because

\[e + bq + v = e \]

\[ep + v = b \]

Boolean substitution:

Example and algebraic methods
Given two algebraic expressions: •

When:

Obtain dividend and divisor:

Division operator:

Complement:

Do not care sets:

Symmetric distribution laws:

Boolean functions — polynomials:

Algebraic methods:

- Boolean algebra:
 - Complement.
 - Symmetric distribution laws.
 - Don’t care sets.
 - Expressions (sum of product forms).

Algebraic division:

Algebraic model
Example

GDM

Algebraic division:

Let
\[\frac{\partial^1}{\partial x^2} \]

and
\[\frac{\partial^1}{\partial x^3} \]

Then
\[\frac{\partial^1}{\partial x^2} = \frac{\partial^1}{\partial x^3} \]

Let
\[\frac{\partial^1}{\partial x^2} = \frac{\partial^1}{\partial x^3} \]

Non-algebraic division:

\[\emptyset \neq \{p, q, r\} \cup \{\ell f\} \]

\[f = (p + q) \cdot (q + v) \]

\[q + v = \ell f \]

and
\[q + v = \ell f \]

Quotient \(\bar{Q} \) and remainder \(R \) are sum of

(monomials) of the divisor:

\[\{u, \ldots, z\} = B \]

(monomials) of the dividend:

\[\{\ell, \ldots, \ell\} = A \]

An algorithm for division

\[\emptyset \neq \{\ell f\} \cup \{p, q, r\} \]

\[f = (p + q) \cdot (q + v) \]

Then
\[f = (p + q) \cdot (q + v) \]

Let
\[f = (p + q) \cdot (q + v) \]

Because
\[f = (p + q) \cdot (q + v) \]

Then
\[f = (p + q) \cdot (q + v) \]

Let
\[f = (p + q) \cdot (q + v) \]

Algebraic division:

Example
An algorithm for division

\[q + a = q + \text{division remainder} \]
\[p + c = p + \text{remainder} \]
\[\{ q \} = H \quad \text{and} \quad \{ p, c \} = \emptyset \quad \text{\textbf{- Result:}} \]

\{ p, c \} = \{ p, c \} \cup \{ p, c \} = \emptyset \quad \text{\textbf{- Then}} \]
\[\{ p, c \} = \emptyset \quad \text{\textbf{- Then}} \]
\[\{ p, c \} = \emptyset \quad \text{\textbf{- Then}} \]
\[\{ q, a \} = \emptyset \quad \text{\textbf{- Result:}} \]

Example:

\[
\begin{align*}
\text{Result:} & \quad A = \emptyset \\
\text{else} & \quad 1 = 1 \\
& \quad \text{if } \exists (H, \emptyset) \text{ dropped} \quad \text{with var. in } S \text{ such that } \emptyset = A \\
& \quad \text{return } (A) \quad \forall \emptyset = \emptyset \\
& \quad \text{for } (u \text{ to } 1 = 1) \\
& \quad \text{end } \text{ÆBERNACCI DIVISION}(A, B) \\
& \quad \text{end } \text{gcm} \quad \text{gcm} \quad \text{gcm}
\end{align*}
\]
Theorem

Given f_i and f_j, then f_i/f_j is empty when:

- f_j contains a variable not in f_i.
- f_i contains a cube whose support is not contained in that of any cube of f_j.
- f_i contains more terms than f_j.
- The count of any variable in f_i than in f_j.

Substitution

Consider expression pairs.

Apply division (in any order).

Substitute f_i divided by f_j quotient $+$ remainder.

where $j = \frac{f_i}{f_j}$

Use filters to reduce divisions.

Consider expression pairs.
Extraction algorithm:

- Search for appropriate divisors.
- Multiple-cube (kernel) extraction.
- Single-cube extraction: monomial.
- Search for common sub-expressions:

Single-cube extraction:
- Monomial.

Multiple-cube (kernel) extraction:
- Divisors.

Substitution algorithm:

For a substitution to be favorable,

1. If substitution is favorable

 \[f \in GDM \]

2. If \(f \) does not pass the filter test

 \(f \in \text{FILTERED}\)

3. For \(i = 1, \ldots, N \)

 \(f \in \text{SUBSTITUTION}\)
Definitions

Cube-free expression:
- Cannot be factored by a cube.

Kernel of an expression:
- Cube-free quotient of the expression divided by a cube, called co-kernel.

Kernel set of an expression:
- Set of kernels.

Example

$\{(b + d + e\ c e + q + c\ e + q + a\ c\ e + q + a)\} = (x f)$

Expression f has a kernel of its own because cube free.

- Divide f by g. Get 1. Not cube free.
- Divide f by e. Get $a + c + q + d$. Cube free. Kernel.
- Divide f by c. Get $q + a + e + c$. Cube free. Kernel.
- Divide f by $q + a + e$. Get c. Cube free. Not cube free.
- Divide f by c. Get $q + a + e + c$. Cube free. Not cube free.

Cube-free expression.
- Cannot be factored by a cube.

Divide f by g. Get 1. Not cube free.

- Divide f by e. Get $a + c + q + d$. Cube free. Kernel.
- Divide f by c. Get $q + a + e + c$. Cube free. Kernel.
- Divide f by $q + a + e$. Get c. Cube free. Not cube free.
- Divide f by c. Get $q + a + e + c$. Cube free. Not cube free.

Example
Theorem

(Brayton and McMullen)
c + GDM

Two expressions have a common multiple-cubed divisor 1 if and only if:

- there exist kernels 3 4 5 6 7 8 9 and :

\[\begin{align*}
\alpha \delta &= \gamma f \\
\epsilon \delta + \epsilon\epsilon + \epsilon \epsilon + \epsilon p \epsilon &= \delta f \\
\delta + \epsilon \epsilon + \epsilon \epsilon &= \chi f \\
\eta + \nu &= \eta f
\end{align*} \]

Select intersection (\(\eta + \nu \))

The kernel set of \(\eta \) is empty

\[\{ (\alpha \delta + \epsilon \epsilon + \epsilon \epsilon + \epsilon p \epsilon) : (\delta + \epsilon \epsilon + \epsilon \epsilon + \epsilon p \epsilon) : (\eta + \nu) \} = (\eta f) \]

\[\{ (\delta + \epsilon \epsilon + \epsilon \epsilon + \epsilon p \epsilon) : (\delta + \epsilon \epsilon + \epsilon \epsilon + \epsilon p \epsilon) : (\eta + \nu) \} = (\eta f) \]

Example

For common sub-expression can be dropped:

- if kernel intersection is void, then the search

Consequence:

\[p f \]

- there exist kernels \(y \) such that

\[(p f) \subseteq Y \]

cube divisor if and only if:

- two expressions have a common multiple-

(Reyes and McMullen)

Theorem
Kernel set computation

```
( (f/s)f, (c)f )

Naive method:

- Divide function by elements in power set of its support set.

Smart way:

- Use recursion:
  - Kernel of kernels are kernels.

Recursive kernel computation:

- Exploit commutativity of multiplication.

foreach variable x:

if (x f) has such that largest cube containing x:

{ foreach variable x ∈ S:

  if (x f) is non-cube-free quotient:
    return the cubes of whose support includes C:

  return

  \[
  f \cap K = K
  \]

  \[
  \{ (f/s)f, (c)f \}
  \]

Kernels of kernels are kernels.

return the cubes of whose support includes C:
```
Some computation may be redundant:

- Example:
 - Divide by \(g \) and then by \(a \).
 - Divide by \(a \) and then by \(g \).

Improvement:
- Keep a pointer to literals used so far.
- Obtain duplicate kernels.

Example:
- Some computation may be redundant.

Recursive kernel computation

Analysis
A co-kernel corresponds to a prime rectangle.

- \(C \) are the columns not in \(C \).
- Co-rectangle (\(H \) of a rectangle (\(H \), \(C \)):
- Prime rectangle:
 - with all entries equal to 1.
 - Subset of rows and columns
 - Rectangle (\(H \), \(C \)):
 - Boolean matrix:

Matrix representation of kernels

\[
\begin{align*}
\{(q + a) \cdot (p + q + a e + 9) + p + q + a e + g e + a e\} &= \emptyset \\
\text{Adds } a e + g e + a e + p + q + a e \text{ to the kernel set.} \\
\text{Literal } q. \text{ No action required.}
\end{align*}
\]

\[
\begin{align*}
\{\} &= \emptyset \\
\emptyset \text{ to the kernel set at the last step.} \\
\text{Call considers variable } q. \text{ No kernel.} \\
\text{Recursive call with arguments: } a e + g e + p + q + a e \text{ and pointer—} & = 5 + 1. \\
\text{Literal } q. \text{ Select cube } e:
\end{align*}
\]

\[
\begin{align*}
\emptyset &= \emptyset \\
\text{No action required.} \\
\text{Recursive call with arguments: } a e + g e + p + q + a e \text{ and pointer—} & = 5 + 1. \\
\text{Literal } q. \text{ No action required.} \\
\text{Recursive call with arguments: } a e + g e + p + q + a e \text{ and pointer—} & = 5 + 1. \\
\text{Literal } q. \text{ Select cube } e:
\end{align*}
\]

\[
\begin{align*}
\emptyset &= \emptyset \\
\text{No action required.} \\
\text{Recursive call with arguments: } a e + g e + p + q + a e \text{ and pointer—} & = 5 + 1. \\
\text{Literal } q. \text{ No action required.} \\
\text{Recursive call with arguments: } a e + g e + p + q + a e \text{ and pointer—} & = v + q = 3. \\
\text{Literal } v. \text{ No action required.} \\
\text{Literal } v \text{ or } q. \text{ No action required.}
\end{align*}
\]

\[
\begin{align*}
\emptyset &= \emptyset \\
\emptyset &= \emptyset \\
\text{Literal } q. \text{ No action required.}
\end{align*}
\]

Example

\[
\begin{align*}
\emptyset &= \emptyset \\
\emptyset &= \emptyset \\
\text{Literal } q. \text{ No action required.}
\end{align*}
\]
- Kernel C.

- C-co-rectangle: $\{1,2,1,2,4,6\}$.

- C-co-kernel C.

\[
\begin{array}{c|c|c}
\text{Rectangle (prime): } & \{1,2\} & \{3,5\} \\
\hline
\text{Kernel} & \text{co-rectangle: } \{1,2\} & \{3,5\} \\
\end{array}
\]

Single-cube-extraction

\[
\begin{array}{c|c|c|c|c|c|c}
\text{cube} & \text{var} & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
b & d & e & a & c & p & q & e \\
\end{array}
\]

\[
g + d e + a c e = x f
\]
Single-cube extraction:

- Cube intersection from different functions.
- Cube from matrix representation.
- Cube from matrix representation.
- Cube from matrix representation.

Prime rectangle: \{(1, 2, 3, 5, 6, 7) \}

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\[
\begin{array}{cccccc}
 a & q & c & b & e & d \\
\hline
 4 & 3 & 2 & 1 & 0 & 5 \\
 6 & 5 & 4 & 3 & 2 & 1 \\
\end{array}
\]

\[
q + cde + b + de + e = x_{non}f -
\]

Auxiliary function:

\[
q + cde = x_{non}f -
\]

\[
b + de + e = x_{non}f -
\]

Expressions:

- Cube from matrix representation.
- Cube from matrix representation.
- Cube from matrix representation.

Example:

- Cube from matrix representation.
- Cube from matrix representation.
- Cube from matrix representation.
Cubeextractionalgorithm

\begin{align*}
\text{w} &= a + b \\
\text{z} &= abc \\
\text{x} &= ace + bce + de + g \\
\text{y} &= ad + bd + cde + ge \\
\text{f} &= wde + de + g \\
\text{g} &= wde + cde + ge \\
\end{align*}

{
\text{By quotient + remainder, replace all functions } f \text{, where } f \text{ is a divisor.} \\
\text{Add } \text{to the network with expression } f.C. \\
\text{Generate new label } C. \\
\text{while (some favorable common cube exists) }
\}

\text{Cube extraction algorithm}
Example

\[\{(p+x)^2 \cap x \}: \{(q+x^2) \} = (bf)M * \]
\[\{(q+x^2) \} = (df)M * \]

\[p = p' x' + \forall q = \forall q' x' \cap \forall q = q' x' \cap \forall q = q' x' = q' x' = \forall x \]

Relabeling:

\[\{(p + \forall q + \forall v) \cap (q + v) \} = (bf)M - \]
\[p + \forall q + \forall v = bf \]
\[\{(q + v) \} = (df)M - \]
\[\forall p + \forall q + \forall e q + \forall e = df \]

Extended cube intersection algorithm:

- Sum of all kernels.
- Form auxiliary function:
- Relabeling:
- Kernels by cubes.
- Cubes by new variables.

Relabeling:

We need a kernel/cube matrix.

Multiple-cube extraction: any
Kernelextractionalgorithm

Example (2)
Decomposition

- Divide expression recursively.
- Kernel-based decomposition.
- NAND/NOR decomposition.
- Method of Asenhus and Curtis.

Different ways:

- Kernel-based decomposition.

\[x = a + b \]

\[t = ac + bc + d \]

\[s = a + b \]

\[x = tc + g \]

\[x = ace + bce + de + g \]

Different ways:

- Kernel-based decomposition.

\[x = tc + g \]

\[x = ace + bce + de + g \]

Different ways:

- Kernel-based decomposition.
Decomposition Algorithm

\[
\text{Decompose expression } x \text{ if } \psi = x_n \\
\text{if } \phi \neq x_n \\
\text{whose size is above } x_n \\
\text{return } x_n \\
\text{selected vertex with expression } x_n \\
\text{repeat } \\
\text{Decompose (V', E')} \\
\]

Example

\[
q + a = x_f \\
p + c + e = q + c_e + e + a_e = x_f \\
\]

- Select kernel a
- Decompose •
- Recur on the quotient •
- Select kernel ac + e
- Decompose •
View Boolean functions as algebraic expressions.

Fast manipulation algorithms.

Some optimality lost.

Useful to reduce large networks.