CS/EE 5740/6740:
Computer Aided Design of Digital Circuits

Chris J. Myers

Course description

Computer Aided Design (CAD) systems play a key role in the design of Very Large Scale Integrated (VLSI) circuits. This course presents the techniques used for the Computer Aided synthesis of integrated circuits. Topics include: two-level logic synthesis, models for sequential systems, synthesis and verification of finite state machines, multi-level logic synthesis, automatic test generation, and technology mapping.

Prerequisites

Students should have a familiarity with computer programming (CS 201-2), digital logic design (EE/CS 361), and algorithms and data structures (CS 354). Courses in computer organization (EE/CS 362,3,7) and integrated circuit design (EE/CS 542,3,4,5) are strongly recommended.

Textbook

Grading policy for CS/EE 5740

- Homework/quizzes 30 percent
- Two midterms 30 percent
- Final or Project 40 percent

Grading policy for CS/EE 6740

- Homework/quizzes 30 percent
- Two midterms 30 percent
- Project 20 percent
- Final 20 percent
Course Info

COURSE: CS/EE 5740/6740
Credits: 3
Place: EMCB 102
Time: TTh 11:50am-1:10pm
Class email: ee5740@ee.utah.edu
Class webpage: http://www.async.elen.utah.edu/~myers/ee5740.html

INSTRUCTOR: Chris J. Myers
Electronic Mail: myers@ee.utah.edu
Location: MEB 4140
Telephone: (801) 581-6490
Office Hours: TTh 10:30-11:45am and by appointment
Tentative syllabus

1. Introduction
 - Motivation for CAD for VLSI
 - Overview of optimal logic synthesis
 - Graph algorithms and complexity
 - A quick tour of logic synthesis

2. Two-level logic synthesis
 - Boolean algebra
 - Synthesis of two-level circuits
 - Heuristic minimization of two-level circuits
 - Binary decision diagrams (BDDs)

3. Sequential logic synthesis and verification
 - Models of sequential systems
 - Synthesis and verification of finite state machines
 - Finite automata

4. Multilevel logic synthesis
 - Multi-level logic synthesis
 - Multi-level minimization
 - Automatic test generation for combinational circuits
 - Technology mapping