HOMEWORK #1: Chemical Reactions

This homework is due at the beginning of class on Tuesday, September 4, 2007.

1. Read preface and chapter 1.

2. Select a network that you wish to use in your assignments this semester. Suggestions are listed on the course webpage. Email the choice to me (myers@ece.utah.edu) as soon as possible but no later than August 30th.

3. The first chemical reaction below is a representation for transcription and translation of a protein \(P \). This process begins when RNAP binds to an operator/promoter site \(O \) and forms a complex \(C_1 \). At this point, either the RNAP can fall off \(O \) or transcription and translation can be initiated resulting in the protein \(P \). The second chemical reaction represents that the protein \(R \) can bind to \(O \) forming the complex \(C_2 \) which represses transcription blocking the production of \(P \).

\[
O + \text{RNAP} \xrightleftharpoons[k_2]{k_1} C_1 \xrightarrow[k_3]{k_4} O + \text{RNAP} + P \\
O + R \xrightleftharpoons[k_5]{k_4} C_2
\]

Using the law of mass action, write down the equations for the rates of change of \([P]\), \([C_1]\), and \([C_2]\).

4. Write an equation for the total operator concentration, \([O_t]\).

5. The reactions above can be thought of being like an enzymatic reaction where \(O \) acts like the enzyme. If the amount of \(O \) is much less than that of RNAP or \(R \), then a steady state approximation can be used to simplify the equations for the rate of \(P \) production. Using this approximation, derive an equation for \(\frac{d[P]}{dt} \) in terms of the concentrations of \([\text{RNAP}]\), \([R]\), and \([O_t]\), and the rate constants. You may also assume that \(k_3 \ll k_2 \) to further simplify the derivations (hint: solve for \([C_2]\) in terms of \([O]\) and \([R]\) first followed by using your \([O_t]\) equation to solve for \([O]\) in terms of \([O_t]\), \([C_1]\), and \([R]\)).

6. Consider only the binding reactions to \(O \):

\[
O + \text{RNAP} \xrightleftharpoons[k_2]{k_1} C_1 \\
O + R \xrightleftharpoons[k_5]{k_4} C_2
\]

Assuming that \(k_2 = k_5 = 1.0 \text{ sec}^{-1}, \Delta G^\circ = -12.5 \text{ kcal mol}^{-1} \) for the first reaction, \(\Delta G^\circ = -12.0 \text{ kcal mol}^{-1} \) for the second reaction, and \(RT = 0.614 \text{ kcal mol}^{-1} \) (i.e., 309°K), what are the values of \(k_1 \) and \(k_4 \) (hint: the units should be \((\text{nM sec})^{-1}\), and to get these units you need to multiply your answer by \(1 \times 10^{-9}\)).

7. Assuming that \([O_t] = 1 \text{ nM} \) and \([\text{RNAP}] = 30 \text{ nM} \), at what concentration of \([R]\) is the rate of production of \([P]\) reduced by one half.