Asynchronous Circuit Design

Chris J. Myers
Lecture B: Sets and Relations
Appendix B

Sets

- A set \(S \) is any collection of objects.
- Each \(x \) in \(S \) is a member of \(S \) (denoted \(x \in S \)).
- When \(x \) is not a member of \(S \), it is denoted by \(x \notin S \).
- Two sets \(X \) and \(Y \) are equal when they consist of the same members (denoted \(X = Y \)).
- This means that if \(X = Y \) and \(a \in X \), then \(a \in Y \).
- This is known as the principle of extension.
- If two sets are not equal, it is denoted \(X \neq Y \).
- There are three basic properties of equality:
 - \(X = X \) (reflexive)
 - \(X = Y \) implies \(Y = X \) (symmetric)
 - \(X = Y \) and \(Y = Z \) then \(X = Z \) (transitive)

Principle of Abstraction

Large or infinite sets are described using the help of predicates.
- A predicate \(P(x) \) takes an object and returns true or false.
- When a set \(S \) is defined using a predicate \(P(x) \), the set \(S \) contains those objects a such that \(P(a) \) is true.
- This is known as the principle of abstraction.
- This is denoted using set builder notation as follows:
 \[S = \{ x \mid P(x) \} \]
- Read as “the set of all objects \(x \) such that \(P(x) \) is true.”
- The following sets can be used interchangeably:
 \[\{ x \mid x \in A \text{ and } P(x) \} = \{ x \in A \mid P(x) \} \]
 \[\{ y \mid y = f(x) \text{ and } P(y) \} = \{ f(x) \mid P(x) \} \]

Examples

\{ x \in \mathbb{N} \mid x \text{ divides } 30 \} =

Which of the following sets are equal to it?
\{ 30, 15, 10, 6, 5, 3, 2, 1 \}
\{ 1, 2, 3, 5, 6, 10, 15, 30 \}
\{ 1, 2, 3, 4, 5, 6, 10, 15, 30 \}
\{ 1, 2, 3, 5, 6, 10, 15, 30 \}

Subset

- If \(X \) and \(Y \) are sets such that every member of \(X \) is also a member of \(Y \),
 then \(X \) is a subset of \(Y \) (denoted \(X \subseteq Y \)).
- If every member of \(Y \) is a member of \(X \), then \(X \) is a superset of \(Y \)
 (denoted \(X \supseteq Y \)).
- If \(X \subseteq Y \) and \(X \neq Y \), \(X \) is a proper subset of \(Y \) (\(X \subset Y \)).
- Proper superset is similarly defined (denoted \(X \supset Y \)).
- The subset relation has the following three basic properties:
 - \(X \subseteq X \) (reflexive)
 - \(X \subseteq Y \) and \(Y \subseteq X \) implies that \(X = Y \) (antisymmetric)
 - \(X \subseteq Y \) and \(Y \subseteq Z \), then \(X \subseteq Z \) (transitive)

Empty Set and Power Set

- The empty set (denoted \(\emptyset \)) includes no elements.
- For any set \(X \), the empty set is a subset of it (i.e., \(\emptyset \subseteq X \)).
- Each set \(X \neq \emptyset \) has at least two subsets \(X \) and \(\emptyset \).
- Each \(x \in X \) is also a subset of \(X \) (i.e., \(\{ x \} \subseteq X \)).
- Similarly, each pair of objects makes up a subset.
- The power set of a set \(X \) is all subsets of \(X \) (denoted \(2^X \)).
- The number of members of a set \(X \) is denoted \(|X| \).
- The number of members of \(2^X \) is equal to \(2^{|X|} \).
The union of two sets X and Y (denoted $X \cup Y$) is the set composed of all objects that are a member of either X or Y (i.e., $X \cup Y = \{x \mid x \in X \text{ or } x \in Y\}$).

The intersection of two sets X and Y (denoted $X \cap Y$) is set composed of all objects that are a member of both X and Y (i.e., $X \cap Y = \{x \mid x \in X \text{ and } x \in Y\}$).

Two sets X and Y are disjoint if their intersection contains no members (i.e., $X \cap Y = \emptyset$).

Otherwise, the sets intersect (i.e., $X \cap Y \neq \emptyset$).

A disjoint collection is a set of sets in which each pair of member sets is disjoint.

A partition of X is a disjoint collection π of nonempty subsets of X such that each member of X is contained within set in π.

Complements

The set U is called the universal set.

The absolute complement of a set X (denoted \overline{X}) are those elements in U which are not in X (i.e., $\{x \in U \mid x \notin X\}$).

The relative complement of a set X with respect to a set Y (denoted $Y - X$) are those elements in Y which are not in X (i.e., $Y - X = Y \cap \overline{X} = \{x \in Y \mid x \notin X\}$).

The symmetric difference of two sets X and Y (denoted $X + Y$) are those objects in exactly one of the two sets [i.e., $(A - B) \cup (B - A)$].

If $U = \{1,2,3,5,6,10,15,30\}$, $X = \{2,3\}$, and $Y = \{2,5\}$, then

$\overline{X} = X - Y = X + Y = \{1,5,10,15,30\}$

Binary Relations

Binary relations show relationships between two items.

Examples include things like “a is less than b”.

An ordered pair is a set of two objects which have an order.

An ordered pair of x and y is denoted by (x,y) and is equivalent to the set $\{(x) , \{x,y\}\}$.

A binary relation is simply a set of ordered pairs.

We say that x is p-related to y (denoted xpy) when p is a binary relation and $(x,y) \in p$.

The domain and range of p are

$D_p = \{x \mid \exists y . (x,y) \in p\}$

$R_p = \{y \mid \exists x . (x,y) \in p\}$

Ternary and n-ary Relations

An ordered triple (x,y,z) is equivalent to the ordered pair $(\langle x,y \rangle, z)$.

A ternary relation is simply a set of ordered triples.

We can further define for any size n an ordered n-tuple and use them to define n-ary relations.
Asynchronous Circuit Design

Example

- A binary relation \(p \) that says that \(x \) times \(y \) equals 30 is defined as follows:
 \[
 p = \{(1,30), (2,15), (3,10), (5,6), (6,5), (10,3), (15,2), (30,1)\}
 \]
- The cartesian product is the set of all pairs \((x, y)\), where \(x \) is a member of some set \(X \) and \(y \) is a member of some set \(Y \):
 \[
 X \times Y = \{(x,y) | x \in X \land y \in Y\}
 \]
- If \(X \supseteq Q_y \) and \(Y \supseteq R_y \), then \(p \subseteq X \times Y \) and \(p \) is a relation from \(X \) to \(Y \).
- The cartesian product of \(X = \{2,3,5\} \) and \(Y = \{6,10\} \) is defined as follows:
 \[
 X \times Y = \{(2,6), (2,10), (3,6), (3,10), (5,6), (5,10)\}
 \]

Equivalence Relations

- A relation \(p \) in a set \(X \) is an equivalence relation iff it is reflexive (i.e., \(x \rho x \) for all \(x \in X \)), symmetric (i.e., \(x \rho y \) implies \(y \rho x \)), and transitive (i.e., \(x \rho y \) and \(y \rho z \) imply \(x \rho z \)).
- A set \(A \subseteq X \) is an equivalence class iff there exists an \(x \in A \) such that \(A \) is equal to the set of all \(y \) for which \(x \rho y \).
- The equivalence class implied by \(x \) is denoted \([x]\).
- Using \(p \), we can partition a set \(X \) into a set of equivalence classes called a quotient set, which is denoted by \(X/p \).

Example

- The binary relation \(p \) on the set \(X = \{1,2,3,5,6,10,15,30\} \) defined below is an equivalence relation.
 \[
 p = \{(1,1), (2,2), (2,3), (2,5), (3,2), (3,3), (3,5), (5,2), (5,5), (6,6), (6,10), (6,15), (10,6), (10,10), (10,15), (15,6), (15,10), (15,15), (30,30)\}
 \]
- \(X/p = \{\{1\}, \{2\}, \{3\}, \{5\}, \{6\}, \{10\}, \{15\}, \{30\}\} \)

Functions

- A function is a binary relation in which no two members have the same first element.
- More formally, a binary relation \(f \) is a function if \((x, y)\) and \((x, z)\) are members of \(f \), then \(y = z \).
- If \(f \) is a function and \((x, y) \in f\) (i.e., \(x \rho y \)), then \(x \) is an argument of \(f \) and \(y \) is the image of \(x \) under \(f \).
- A function \(f \) is into \(Y \) if \(R_f \subseteq Y \).
- A function \(f \) is onto \(Y \) if \(R_f = Y \).
- A function \(f \) is one-to-one if \(f(x) = f(y) \) implies that \(x = y \).
- Functions can be extended to more variables by using arguments that are ordered \(n \)-tuples.

Partial Order

- A relation \(p \) is a partial order if it is reflexive, antisymmetric (i.e., \(x \rho y \) and \(y \rho x \) implies that \(x = y \)), and transitive.
- A partially ordered set (poset) is a pair \((X, \leq)\), where \(\leq \) partially orders \(X \).
- A partial order is a simple (or linear) ordering if for every pair of elements from the domain \(x \) and \(y \) either \(x \rho y \) or \(y \rho x \).
- An example of a simple ordering is \(\leq \) on the real numbers.
- A simply ordered set is also called a chain.
- Posets \((X, \leq)\) and \((X', \leq')\) are isomorphic if there exists a one-to-one mapping between \(X \) and \(X' \) that preserves order.
Example Posets

Least and Greatest Members

A least member of X with respect to \leq is a x in X such that $x \leq y$ for all y in X.

- A least member is unique.
- A minimal member is a x in X such that there does not exist a y in X such that $y < x$.
- A minimal member need not be unique.
- A greatest member is a x in X such that $y \leq x$ for all y in X.
- A maximal member is a x in X such that there does not exist a y in X such that $y > x$.
- A poset (X, \leq) is well-ordered when each nonempty subset of X has a least member. Any well-ordered set must be a chain.

Upper and Lower Bounds

For a poset (X, \leq) and $A \subseteq X$, an element $x \in X$ is an upper bound for A if for all $a \in A$, $a \leq x$.

- It is a least upper bound for A [denoted lub(A)] if x is an upper bound and $x \leq y$ for all y which are upper bounds of A.
- Similarly, an element $x \in X$ is a lower bound for A if for all $a \in A$, $x \leq a$.
- It is a greatest lower bound for A [denoted glb(A)] if x is a lower bound and $y \leq x$ for all y which are lower bounds of A.
- If A has a least upper bound, it is unique, and similarly for the greatest lower bound.