Introduction

- Many embedded systems are required to collect information about the environment.
- Such a system is called a data acquisition system (DAS).
- Sometimes acquisition of data is system’s fundamental purpose: voltmeter, thermometer, camera, etc.
- Other times it is only part, such as in control or communication systems.
Transducers

Type	**Inp->outp**	**Example**
Abs→abs | \(x \rightarrow y \) | Thermistor converts absolute temperature to resistance
Rel→abs | \(\Delta x \rightarrow y \) | Mass balance converts a mass difference to an angle
Abs→rel | \(x \rightarrow \Delta y \) | Strain gauge converts a displacement to a resistance difference
Rel→rel | \(\Delta x \rightarrow \Delta y \) | Thermocouple converts a temp. difference to a volt. difference

Transducer Linearity

![Graph](image)

- Average Linearity of Full Scale is 1.28%
- \(y = 0.055x - 0.167 \)
- \(R^2 = 0.9976 \)

Linear Variable Differential Transducer (LVDT)

![Diagram](image)

- Ferrite Core
- 2 kHz Oscillator
- Active Primary
- Passive Secondaries
- \(V_{out} \)
- Amp
- displacement \(x \) in mm
Sampling Rate, f_s, Less than $2f_{\text{max}}$

Sampling Rate, f_s, Greater than $2f_{\text{max}}$

Sampling Rate, f_s, Equals $2f_{\text{max}}$

Fixed Sampling Rate
Fixed Sampling Rate

How Fast Must the ADC Be?

- **ADC conversion time** must be smaller than quotient of sampling interval by number of multiplexor signals.
- If f_s is sampling frequency, m is number of multiplexor signals, t_{mux} is settling time of the multiplexer, and t_c is ADC conversion time, then without S/H:
 \[m \cdot (t_{mux} + t_c) < \frac{1}{f_s} \]
- With S/H, must include aquisition time, t_{aq}, and aperture time, t_{ap}:
 \[m \cdot (t_{mux} + t_{aq} + t_{ap} + t_c) < \frac{1}{f_s} \]

Specifications for the Analog Signal Processing

- A S/H is required if the analog input changes more than one resolution during the conversion time.
- A S/H is required if:
 \[\frac{dz}{dt} \cdot t_c > 0.5\Delta_z \]

 where $\frac{dz}{dt}$ is maximum slope of ADC input voltage, Δ_z is the ADC resolution, and t_c is the ADC conversion time.

Specifications for the S/H
Temperature Measurement System

- Range of \(T \) is 0 to 50°C with resolution of 0.25°C, and a frequency range of 0 to 0.1Hz.
- Transducer has slope of 10°C/s and resistance:
 \[R = 100 + 0.4T \]

Temperature Measurement System

- One-pole low-pass analog filter needed to pass signal from 0 to 0.1Hz, reject noise > 0.1Hz, and prevent aliasing.

Temperature Measurement System

- Needed ADC precision is 50°C/0.25°C = 200, so 8-bits.
- Use bridge circuit to convert RTD resistance into voltage.
- ADC range 0 to 5V and \(V_1 - V_2 \) is 0 to 0.0191V, so amp needs gain of 261.
- If ADC conversion time is 25\(\mu \)s, no S/H needed because:
 \[10°C/s \cdot 25\mu s = 0.00025°C << 0.25°C \]
- Noise must be less than the resolution (75\(\mu \)V).
 \[\text{Amplifier noise} \leq \frac{\text{resolution}}{2} = 37\mu V \]

Amplifier and Low-Pass Filter

- Effective output impedance is 100Ω. Input impedance of amp must high enough not to affect ADC (>51.2 kΩ).