Asynchronous Circuit Design

Chris J. Myers

Lecture B: Sets and Relations
Appendix B
A set S is any collection of objects.

Each x in S is a member of S (denoted $x \in S$).

When x is not a member of S, it is denoted by $x \notin S$.

Two sets X and Y are equal when they consist of the same members (denoted $X = Y$).

This means that if $X = Y$ then $a \in X$ implies $a \in Y$ and vice versa.

This is known as the principle of extension.

If two sets are not equal, it is denoted $X \neq Y$.

There are three basic properties of equality:

1. $X = X$ (reflexive)
2. $X = Y$ implies $Y = X$ (symmetric)
3. $X = Y$ and $Y = Z$ then $X = Z$ (transitive)
Principle of Abstraction

- Large or infinite sets are described using the help of *predicates*.
- A predicate $P(x)$ takes an object and returns true or false.
- When a set S is defined using a predicate $P(x)$, the set S contains those objects a such that $P(a)$ is true.
- This is known as the *principle of abstraction*.
- This is denoted using *set builder notation* as follows:

$$S = \{ x \mid P(x) \}$$

- Read as “the set of all objects x such that $P(x)$ is true.”
- The following sets can be used interchangeably:

$$\{ x \mid x \in A \text{ and } P(x) \} = \{ x \in A \mid P(x) \}$$
$$\{ y \mid y = f(x) \text{ and } P(x) \} = \{ f(x) \mid P(x) \}$$
Examples

\[\{ x \in \mathbb{N} \mid x \text{ divides } 30 \} = \]

Which of the following sets are equal to it?

- \{30, 15, 10, 6, 5, 3, 2, 1\}
- \{1, 2, 3, 4, 5, 6, 10, 15, 30\}
- \{1, 1, 2, 3, 5, 5, 6, 10, 15, 30\}
- \{1, 2, 3, 5, 5, 10, 15, 30\}
If \(X \) and \(Y \) are sets such that every member of \(X \) is also a member of \(Y \), then \(X \) is a subset of \(Y \) (denoted \(X \subseteq Y \)).

If every member of \(Y \) is a member of \(X \), then \(X \) is a superset of \(Y \) (denoted \(X \supseteq Y \)).

If \(X \subseteq Y \) and \(X \neq Y \), \(X \) is a proper subset of \(Y \) (\(X \subset Y \)).

Proper superset is similarly defined (denoted \(X \supset Y \)).

The subset relation has the following three basic properties:

1. \(X \subseteq X \) (reflexive)
2. \(X \subseteq Y \) and \(Y \subseteq X \) implies that \(X = Y \) (antisymmetric)
3. \(X \subseteq Y \) and \(Y \subseteq Z \), then \(X \subseteq Z \) (transitive)
The *empty set* (denoted \emptyset) includes no elements.

For any set X, the empty set is a subset of it (i.e., $\emptyset \subseteq X$).

Each set $X \neq \emptyset$ has at least two subsets X and \emptyset.

For each $x \in X$ there is a corresponding subset of X (i.e., $\{x\} \subseteq X$).

Similarly, each pair of objects makes up a subset.

The *power set* of a set X is all subsets of X (denoted 2^X).

The number of members of a set X is denoted $|X|$.

The number of members of 2^X is equal to $2^{|X|}$.
The union of two sets X and Y (denoted $X \cup Y$) is the set composed of all objects that are a member of either X or Y (i.e., $X \cup Y = \{ x \mid x \in X \text{ or } x \in Y \}$).

The intersection of two sets X and Y (denoted $X \cap Y$) is set composed of all objects that are a member of both X and Y (i.e., $X \cap Y = \{ x \mid x \in X \text{ and } x \in Y \}$).

Two sets X and Y are disjoint if their intersection contains no members (i.e., $X \cap Y = \emptyset$).

Otherwise, the sets intersect (i.e., $X \cap Y \neq \emptyset$).

A disjoint collection is a set of sets in which each pair of member sets is disjoint.

A partition of X is a disjoint collection π of nonempty subsets of X such that each member of X is contained within a set in π.
Examples

- If \(X = \{2, 3, 5\} \) and \(Y = \{1, 2, 3, 5, 6, 10, 15, 30\} \), then
 \[
 X \cup Y = \]
 \[
 2^X = \]

- If \(X = \{2, 3\} \) and \(Y = \{2, 5\} \), then
 \[
 X \cup Y = \]
 \[
 X \cap Y = \]

- Partition of \(\{1, 2, 3, 5, 6, 10, 15, 30\} \)?
 - \(\{\{1\}, \{3, 5\}, \{6, 10, 15\}, \{30\}\} \)
 - \(\{\{1\}, \{2, 3, 5\}, \{5, 6, 10, 15\}, \{30\}\} \)
 - \(\{\{1\}, \{2, 3, 5\}, \{6, 10, 15\}, \{30\}\} \)
Complements

- The set U is called the *universal set*.
- The *absolute complement* of a set X (denoted \overline{X}) are those elements in U which are not in X (i.e., $\{x \in U \mid x \notin X\}$).
- The *relative complement* of a set X with respect to a set Y (denoted $Y - X$) are those elements in Y which are not in X (i.e., $Y - X = Y \cap \overline{X} = \{x \in Y \mid x \notin X\}$).
- The *symmetric difference* of two sets X and Y (denoted $X + Y$) are those objects in exactly one of the two sets [i.e., $(A - B) \cup (B - A)$].
- If $U = \{1, 2, 3, 5, 6, 10, 15, 30\}$, $X = \{2, 3\}$, and $Y = \{2, 5\}$, then

 $$\begin{align*}
 \overline{X} &= \quad \\
 X - Y &= \quad \\
 X + Y &=
 \end{align*}$$
Identities

<table>
<thead>
<tr>
<th>Law</th>
<th>Union</th>
<th>Intersection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associative</td>
<td>$A \cup (B \cup C) = (A \cup B) \cup C$</td>
<td>$A \cap (B \cap C) = (A \cap B) \cap C$</td>
</tr>
<tr>
<td>Commutative</td>
<td>$A \cup B = B \cup A$</td>
<td>$A \cap B = B \cap A$</td>
</tr>
<tr>
<td>Distributive</td>
<td>$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$</td>
<td>$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$</td>
</tr>
<tr>
<td>Identity</td>
<td>$A \cup \emptyset = A$</td>
<td>$A \cap U = A$</td>
</tr>
<tr>
<td>Inverse</td>
<td>$A \cup \overline{A} = U$</td>
<td>$A \cap \overline{A} = \emptyset$</td>
</tr>
<tr>
<td>Idempotent</td>
<td>$A \cup A = A$</td>
<td>$A \cap A = A$</td>
</tr>
<tr>
<td>Absorption</td>
<td>$A \cup (A \cap B) = A$</td>
<td>$A \cap (A \cup B) = A$</td>
</tr>
<tr>
<td>DeMorgan</td>
<td>$\overline{A \cup B} = \overline{A} \cap \overline{B}$</td>
<td>$\overline{A \cap B} = \overline{A} \cup \overline{B}$</td>
</tr>
</tbody>
</table>

- The *principle of duality* allows translation of any theorem in terms of \cup, \cap, and complement to a dual theorem.
Binary relations show relationships between two items.
Examples include things like “a is less than b”.
An ordered pair is a set of two objects which have an order.
An ordered pair of \(x \) and \(y \) is denoted by \(\langle x, y \rangle \) and is equivalent to the set \(\{\{x\}, \{x, y\}\} \).
A binary relation is simply a set of ordered pairs.
We say that \(x \) is \(\rho \)-related to \(y \) (denoted \(x \rho y \)) when \(\rho \) is a binary relation and \(\langle x, y \rangle \in \rho \).
The domain and range of \(\rho \) are
\[
D_{\rho} = \{ x \mid \exists y . \langle x, y \rangle \in \rho \} \\
R_{\rho} = \{ y \mid \exists x . \langle x, y \rangle \in \rho \}
\]
Ternary and n-ary Relations

- An ordered triple $\langle x, y, z \rangle$ is equivalent to the ordered pair $\langle \langle x, y \rangle, z \rangle$.
- A ternary relation is simply a set of ordered triples.
- We can further define for any size n an ordered n-tuple and use them to define n-ary relations.
Example

- A binary relation ρ that says that x times y equals 30 is defined as follows:

 \[
 \rho = \{ \langle 1, 30 \rangle, \langle 2, 15 \rangle, \langle 3, 10 \rangle, \langle 5, 6 \rangle, \langle 6, 5 \rangle, \langle 10, 3 \rangle, \langle 15, 2 \rangle, \langle 30, 1 \rangle \}
 \]

- The *cartesian product* is the set of all pairs $\langle x, y \rangle$, where x is a member of some set X and y is a member of some set Y.

 \[
 X \times Y = \{ \langle x, y \rangle \mid x \in X \land y \in Y \}
 \]

- If $X \supseteq D_\rho$ and $Y \supseteq R_\rho$, then $\rho \subseteq X \times Y$ and ρ is a *relation from X to Y*.

- The cartesian product of $X = \{2, 3, 5\}$ and $Y = \{6, 10\}$ is defined as follows:

 \[
 X \times Y =
 \]
A relation ρ in a set X is an *equivalence relation* iff it is reflexive (i.e., $x \rho x$ for all $x \in X$), symmetric (i.e., $x \rho y$ implies $y \rho x$), and transitive (i.e., $x \rho y$ and $y \rho z$ imply $x \rho z$).

A set $A \subseteq X$ is an *equivalence class* iff there exists an $x \in A$ such that A is equal to the set of all y for which $x \rho y$.

The equivalence class implied by x is denoted $[x]$.

Using ρ, we can partition a set X into a set of equivalence classes called a *quotient set*, which is denoted by X/ρ.

The binary relation \(\rho \) on the set \(X = \{1, 2, 3, 5, 6, 10, 15, 30\} \) defined below is an equivalence relation.

\[
\rho = \{ (1, 1), (2, 2), (2, 3), (2, 5), (3, 2), (3, 3), (3, 5), (5, 2), \\
(5, 3), (5, 5), (6, 6), (6, 10), (6, 15), (10, 6), \\
(10, 10), (10, 15), (15, 6), (15, 10), (15, 15), (30, 30) \}
\]

\[
X / \rho =
\]
A function is a binary relation in which no two members have the same first element.

More formally, a binary relation \(f \) is a function if \(\langle x, y \rangle \) and \(\langle x, z \rangle \) are members of \(f \), then \(y = z \).

If \(f \) is a function and \(\langle x, y \rangle \in f \) (i.e., \(xfy \)), then \(x \) is an argument of \(f \) and \(y \) is the image of \(x \) under \(f \).

A function \(f \) is into \(Y \) if \(R_f \subseteq Y \).

A function \(f \) is onto \(Y \) if \(R_f = Y \).

A function \(f \) is one-to-one if \(f(x) = f(y) \) implies that \(x = y \).

Functions can be extended to more variables by using arguments that are ordered \(n \)-tuples.
The function f on the set $X = \{1, 2, 3, 5, 6, 10, 15, 30\}$ is defined as the result of dividing 30 by x.

$$f = \{\langle 1, 30 \rangle, \langle 2, 15 \rangle, \langle 3, 10 \rangle, \langle 5, 6 \rangle, \langle 6, 5 \rangle, \langle 10, 3 \rangle, \langle 15, 2 \rangle, \langle 30, 1 \rangle\}$$

Is it onto X?
Is it one-to-one?
A relation ρ is a *partial order* if it is reflexive, antisymmetric (i.e., $x \rho y$ and $y \rho x$ implies that $x = y$), and transitive.

A *partially ordered set (poset)* is a pair $\langle X, \leq \rangle$, where \leq partially orders X.

A partial order is a *simple (or linear) ordering* if for every pair of elements from the domain x and y either $x \rho y$ or $y \rho x$.

An example of a simple ordering is \leq on the real numbers.

A *simply ordered set* is also called a *chain*.

Posets $\langle X, \leq \rangle$ and $\langle X', \leq' \rangle$ are isomorphic if there exists a one-to-one mapping between X and X' that preserves order.
Example Posets

- Poset 1:
 - Elements: $\{1, 2, 3, 5, 6, 10, 15, 30\}$
 - Partial order:
 - $1 \leq 2, 3, 5$
 - $2 \leq 6$
 - $3 \leq 5, 6, 10$
 - $5 \leq 10, 15$
 - $6 \leq 15$
 - $10 \leq 15$
 - $15 \leq 30$
 - Sets:
 - $\{1\}$
 - $\{2\}$
 - $\{3\}$
 - $\{5\}$
 - $\{2, 3\}$
 - $\{2, 5\}$
 - $\{3, 5\}$
 - $\{2, 3, 5\}$

- Poset 2:
 - Elements: $\{1, 2, 3, 5, 6, 10, 15\}$
 - Partial order:
 - $1 \leq 2, 3, 5$
 - $2 \leq 6$
 - $3 \leq 5, 6, 10$
 - $5 \leq 10, 15$
 - $6 \leq 15$
 - $10 \leq 15$
 - Sets:
 - $\{1\}$
 - $\{2\}$
 - $\{3\}$
 - $\{5\}$
 - $\{2, 3\}$
 - $\{2, 5\}$
 - $\{3, 5\}$
 - $\{2, 3, 5\}$

- Poset 3:
 - Elements: $\{2, 3, 5, 6, 10, 15\}$
 - Partial order:
 - $2 \leq 6$
 - $3 \leq 5, 6, 10$
 - $5 \leq 10, 15$
 - $6 \leq 15$
 - $10 \leq 15$
 - Sets:
 - $\{2\}$
 - $\{3\}$
 - $\{5\}$
 - $\{2, 3\}$
 - $\{2, 5\}$
 - $\{3, 5\}$
 - $\{2, 3, 5\}$

- Poset 4:
 - Elements: $\{2, 3, 5, 6, 10, 15\}$
 - Partial order:
 - $2 \leq 6$
 - $3 \leq 5, 6, 10$
 - $5 \leq 10, 15$
 - $6 \leq 15$
 - $10 \leq 15$
 - Sets:
 - $\{2\}$
 - $\{3\}$
 - $\{5\}$
 - $\{2, 3\}$
 - $\{2, 5\}$
 - $\{3, 5\}$
 - $\{2, 3, 5\}$
A least member of X with respect to \leq is a x in X such that $x \leq y$ for all y in X.

A least member is unique.

A minimal member is a x in X such that there does not exist a y in X such that $y < x$.

A minimal member need not be unique.

A greatest member is a x in X such that $y \leq x$ for all y in X.

A maximal member is a x in X such that there does not exist a y in X such that $y > x$.

A poset $\langle X, \leq \rangle$ is well-ordered when each nonempty subset of X has a least member. Any well-ordered set must be a chain.
For a poset \(\langle X, \leq \rangle \) and \(A \subseteq X \), an element \(x \in X \) is an upper bound for \(A \) if for all \(a \in A \), \(a \leq x \).

It is a least upper bound for \(A \) [denoted \(\text{lub}(A) \)] if \(x \) is an upper bound and \(x \leq y \) for all \(y \) which are upper bounds of \(A \).

Similarly, an element \(x \in X \) is a lower bound for \(A \) if for all \(a \in A \), \(x \leq a \).

It is a greatest lower bound for \(A \) [denoted \(\text{glb}(A) \)] if \(x \) is a lower bound and \(y \leq x \) for all \(y \) which are lower bounds of \(A \).

If \(A \) has a least upper bound, it is unique, and similarly for the greatest lower bound.