Asynchronous Circuit Design

Chris J. Myers

Lecture 8: Verification
Chapter 8
Protocol Verification

- Specification for circuit usually tries to accomplish certain goals.
- Examples:
 - Protocol never deadlocks.
 - Whenever there is a request, it is followed by an acknowledgement possibly in a bounded amount of time.
- Can check by simulating a number of important cases.
- Simulation does not guarantee correctness of the design.
- Big problem in asynchronous design where a problem only manifests under a very particular set of delays.
- Verification can also be used to check if a specification meets its goals under all permissible delay behaviors.
Model checking is the process of verifying whether a protocol, circuit, or other type of system has certain desired properties.

To specify desired behavior of a combinational circuit, one can use propositional logic.

For sequential circuits, it is necessary to describe behavior of a circuit over time, so one must use a propositional temporal logic.

Linear-time temporal logic (LTL) is presented here.
A temporal logic is a propositional logic which has been extended with operators to reason about future states of a system.

The set of LTL formulas can be described recursively as follows:

1. Any signal u is a LTL formula.
2. If f and g are LTL formulas, so are:
 1. $\neg f$ (not)
 2. $f \land g$ (and)
 3. $\bigcirc f$ (next state operator)
 4. $f \mathbf{U} g$ (strong until operator)
LTL Semantics

- Truth of formula f is defined with respect to a state s_i ($s_i \models f$).
- $\neg f$ is true in a state s_i when f is false in that state.
- $f \land g$ is true when both f and g are true in s_i.
- $\Box f$ is true in state s_i when f is true in all next states s_j reachable in one transition.
- $f \mathcal{U} g$ is true in a state s_i when in all allowed sequences starting with s_i, f is true until g becomes true.
Formal LTL Semantics

\[s_i \models u \iff \lambda_S(s_i)(u) = 1 \]
\[s_i \models \neg f \iff s_i \not\models f \]
\[s_i \models f \land g \iff s_i \models f \text{ and } s_i \models g \]
\[s_i \models \Box f \iff \text{for all states } s_j \text{ such that } (s_i, t, s_j) \in \delta \cdot s_j \models f \]
\[s_i \models f \mathbf{U} g \iff \text{for all allowed sequences } (s_i, s_{i+1}, \ldots), \]
\[\exists j \cdot j \geq i \land s_j \models g \land (\forall k \cdot i \leq k < j \Rightarrow s_k \models f) \]
LTL Abbreviations

- ♦f means f will eventually become true in all allowed sequences starting in the current state.

\[♦f \equiv \text{true} \mathcal{U} f \]

- □f means f is always true in all allowed sequences.

\[□f \equiv \neg\diamondsuit(\neg f) \]

- f W g means f is always true or until g.

\[f \mathcal{W} g \equiv (f \mathcal{U} g) \lor □f \]
Desired Properties for a Passive/Active Wine Shop

- Should not raise `ack_wine` until `req_wine` goes high:
 \[\square(\neg ack_wine \Rightarrow (\neg ack_wine \mathbin{U} req_wine)) \]

- Once `ack_wine` is high, it must stay high until `req_wine` goes low:
 \[\square(ack_wine \Rightarrow (ack_wine \mathbin{U} \neg req_wine)) \]

- Once the shop has set `req_patron` high, it must hold it high until `ack_patron` goes high:
 \[\square(req_patron \Rightarrow (req_patron \mathbin{U} ack_patron)) \]

- Once the shop sets `req_patron` low, it must hold it low until `ack_patron` goes low:
 \[\square(\neg req_patron \Rightarrow (\neg req_patron \mathbin{U} \neg ack_patron)) \]
Desired Properties for a Passive/Active Wine Shop

- Once the request and acknowledge wires on either side go high, they must be reset again:
 \[\square((req_wine \land ack_wine) \Rightarrow \Diamond(\neg req_wine \land \neg ack_wine)) \]
 \[\square((req_patron \land ack_patron) \Rightarrow \Diamond(\neg req_patron \land \neg ack_patron)) \]

- The wine should not stay on the shelf forever, so after each bottle arrives, the patron should be called.
 \[\square(ack_wine \Rightarrow \Diamond req_patron) \]

- The patron should not arrive expecting wine in the shop before the wine has actually arrived.
 \[\square(\neg ack_patron \Rightarrow (\neg ack_patron \mathbin{\mathbf{U}} ack_wine)) \]
\((\text{ack_wine} \Rightarrow (\text{ack_wine} \lor \neg \text{req_wine})) \)
\(\Box (\text{req}_\text{patron} \Rightarrow (\text{req}_\text{patron} \mathbin{\lor} \text{ack}_\text{patron})) \)
\(\neg \text{req_patron} \Rightarrow (\neg \text{req_patron} \cup \neg \text{ack_patron}) \)
\(((\text{req}_\text{wine} \land \text{ack}_\text{wine}) \Rightarrow \Diamond (\neg \text{req}_\text{wine} \land \neg \text{ack}_\text{wine})) \)
\[((\text{req_patron} \land \text{ack_patron}) \Rightarrow \lozenge (\neg \text{req_patron} \land \neg \text{ack_patron})) \]
\((\text{ack_wine} \Rightarrow \Diamond \text{req_patron})\)
$\square (\neg \text{ack_patron} \Rightarrow (\neg \text{ack_patron} \cup \text{ack_wine}))$
\(\square(\neg \text{ack_patron} \Rightarrow (\neg \text{ack_patron} \cup \text{ack_wine})) \)
\[\neg \text{ack}_\text{patron} \Rightarrow (\neg \text{ack}_\text{patron} \cup \text{ack}_\text{wine}) \]
◊ f states that eventually f becomes true, but it puts no guarantee on how long before f will become true.

To express *bounded response time*, it is necessary to extend the temporal logic that we use to specify timing bounds.

In *timed LTL*, each temporal operator is annotated with a timing constraint.

◊ $\diamond < 5 f$ states that f becomes true in less than 5 time units.
Timed LTL formulas can be described recursively as follows:

1. Any signal u is a timed LTL formula.
2. If f and g are timed LTL formulas then so are:
 1. $\neg f$ (not)
 2. $f \land g$ (and)
 3. $f \mathbf{U}_{\sim c} g$

 where \sim is $<, \leq, =, \geq, >$.

There is no next time operator, since when time is dense, there can be no unique next time.
Using the basic timed LTL primitives, we can also define temporal operators subscripted with time intervals.

\[\Diamond_{\sim c} f \equiv \text{true } U_{\sim c} f \]
\[\Box_{\sim c} f \equiv \neg \Diamond_{\sim c} (\neg f) \]

\[\Diamond_{(a,b)} f \equiv \Diamond_{\sim a} \Diamond_{<(b-a)} f \]
Once the request and acknowledge wires on either side go high, they must be reset again within 10 minutes:

\[\Box((\text{req_wine} \land \text{ack_wine}) \Rightarrow \Diamond_{\leq 10} (\neg \text{req_wine} \land \neg \text{ack_wine}))\]

\[\Box((\text{req_patron} \land \text{ack_patron}) \Rightarrow \Diamond_{\leq 10} (\neg \text{req_patron} \land \neg \text{ack_patron}))\]

We also don’t want the wine to age too long on the shelf, so after each bottle arrives, the patron should be called within 5 minutes:

\[\Box(\text{ack_wine} \Rightarrow \Diamond_{\leq 5} \text{req_patron})\]
Circuit Verification

- Can check circuit by simulating a number of important cases.
- Simulation does not guarantee correctness of the design.
- Big problem in asynchronous design where a hazard may only manifest as a failure under a very particular set of delays.
- Verification checks if a circuit operates correctly under all the allowed combinations of delay.
To verify a circuit *conforms* to a specification, it is necessary to check that all its behaviors are allowed by the specification.

Define using *traces* of events on signals.

A trace is similar to an allowed sequence, but tracks signal changes rather than states.
State Graph for a C-element
Set of all possible traces is represented using a *trace structure*.

To verify hazard-freedom, use *prefix-closed trace structures*.

Described using a four-tuple \(\langle I, O, S, F \rangle \):

- \(I \) is the set of input signals.
- \(O \) is the set of output signals.
- \(S \) is all traces which are considered successful.
- \(F \) is all traces which are considered a failure.

\[A = I \cup O \text{ and } P = S \cup F. \]
A trace structure must be *receptive*.

It is receptive when the state of a circuit cannot prevent an input from happening (i.e., $PI \subseteq P$).
Receptive State Graph for a C-element

Asynchronous Circuit Design
Before composition of circuits must make their signal sets match.

\[T_1 = \langle I_1, O_1, S_1, F_1 \rangle \text{ and } T_2 = \langle I_2, O_2, S_2, F_2 \rangle. \]

If \(N \) is signals in \(A_2 \) and not in \(A_1 \), then add \(N \) to \(I_1 \) and extend \(S_1 \) and \(F_1 \) to allow events on signals in \(N \) at any time.

Must also extend \(T_2 \) with those signals in \(A_1 \) but not in \(A_2 \).

This is done by *inverse delete* function, denoted \(\text{del}(N)^{-1}(x) \) where \(N \) is a set of signals and \(x \) is a set of traces.

Function inserts elements of \(N^* \) between consecutive signals in \(x \).

This function can be extended to a trace structure as follows:

\[
\text{del}(N)^{-1}(T) = \langle I \cup N, O, \text{del}(N)^{-1}(S), \text{del}(N)^{-1}(F) \rangle
\]
Inverter After Renaming and Inverse Deletion
Given two trace structures with *consistent signal sets* (i.e., $A_1 = A_2$ and $O_1 \cap O_2 = \emptyset$):

$$T_1 \cap T_2 = \langle I_1 \cap I_2, O_1 \cup O_2, S_1 \cap S_2, (F_1 \cap P_2) \cup (F_2 \cap P_1) \rangle$$

- Trace is success in composite when a success in both circuits.
- Trace is a failure when it is a failure in either circuit.
- Set of possible traces may be reduced ($P_1 \cap P_2$).
- Composition is defined as follows:

$$T_1 \| T_2 = \text{del}(A_2 - A_1)^{-1}(T_1) \cap \text{del}(A_1 - A_2)^{-1}(T_2)$$
Example
Composition of One Inverter and C-element
Composition of One Inverter and C-element
Complete Circuit

Asynchronous Circuit Design
Composition Example2

\[
\begin{array}{c}
\quad a \\
\quad b \\
\quad c \\
\end{array}
\]
Receptive SG for an OR Gate

Asynchronous Circuit Design

Chris J. Myers (Lecture 8: Verification)
Asynchronous Circuit Design
SG After Composing Both Inverters with OR Gate

Asynchronous Circuit Design

Chris J. Myers (Lecture 8: Verification)
To verify that a circuit correctly implements a specification, we must show that T_I *conforms to* T_S (denoted $T_I \preceq T_S$).

Must show that in any *environment*, T_E, where the specification is failure-free, the circuit is also failure-free.

T_E is any trace structure with complementary inputs and outputs (i.e., $I_E = O_I = O_S$ and $O_E = I_I = I_S$).

To check conformance, must show that for every possible T_E that if $T_E \cap T_S$ is failure-free then so is $T_E \cap T_I$.
Two trace structures T_1 and T_2 are *conformation equivalent* (denoted $T_1 \sim_C T_2$) when $T_1 \preceq T_2$ and $T_2 \preceq T_1$.

If $T_1 \sim_C T_2$, it does not imply that $T_1 = T_2$.

To make this true, use canonical prefix-closed trace structures.
Autofailures

Asynchronous Circuit Design
An autofailure is a trace x which if extended by a signal $y \in O$ then $xy \in F$.

Also denoted $F/O \subseteq F$ where F/O is defined to be $
\{x \mid \exists y \in O . xy \in F\}.$

If $S \neq \emptyset$ then any failure trace has a prefix that is a success, and an input causes it to become a failure.

If the environment sends a signal change which the circuit is not prepared for, we say that the circuit *chokes*.

We must also add to the failure set any trace that has a failure as a prefix (i.e., $FA \subseteq F$).
Failure exclusion makes the success and failure sets disjoint.
When trace occurs in both, circuit may or may not fail.
Remove from success set any trace which is also a failure \((S = S − F)\).
Two Inverters after Simplification

Asynchronous Circuit Design
In a *canonical prefix-closed trace structure*:

1. Autofailures are failures (i.e., \(F/O \subseteq F \)).
2. Once a trace fails, it remains a failure (i.e., \(FA \subseteq F \)).
3. No trace is both a success and failure (i.e., \(S \cap F = \emptyset \)).

Failure set is not necessary (i.e., \(T = \langle I, O, S \rangle \)).

Determine the failure set as follows:

\[
F = \left[(SI \cup \{\varepsilon\}) - S \right] A^*
\]

Any successful trace when extended with an input signal transition and is no longer found in the success set is a failure.

Any such failure trace can be extended indefinitely and will always be a failure.
To check $T_I \preceq T_S$, must check that in all environments that T_S is failure-free that T_I is also failure-free.

Construct a unique worst-case environment called a *mirror* of T (denoted T^M).

Mirror can be constructed by simply swapping the inputs and outputs (i.e., $I^M = O$, $O^M = I$, and $S^M = S$).

If $T_I \parallel T_S^M$ is failure-free, then $T_I \preceq T_S$.
Mirror for a C-Element
Example: Merge Element

\[a, b, c \]

\[a, b, c \]
Can we replace alternating with general merge?

![Diagram of state transitions](image)
Can we replace general with alternating merge?
Can we replace general with alternating merge?

![Diagram of state transitions]

- From state F, transition to state s0 on input a,b,c.
- From state s0, transition to state s1 on input a,b.
- From state s1, transition to state F on input c.
- From state s0, transition to state s1 on input c.
- From state s1, transition to state F on input a,b,c.
Can we replace general with alternating merge?
Can we replace general with alternating merge?
Limitations

- Only checks safety properties.
- If a circuit verifies, it means it does nothing bad.
- It does not mean, however, it does anything good.
- A “block of wood” accepts any input, but it never produces any output (i.e., \(T = \langle I, O, I^* \rangle \)).
- Assuming inputs and outputs are made to match, a block of wood would conform to any specification.
Strong conformance removes this problem.

T_1 conforms strongly to T_2 (denoted $T_1 \sqsubseteq T_2$) if $T_1 \preceq T_2$ and $S_1 \supseteq S_2$.

All successful traces of T_2 must be successful traces of T_1.
A *timed trace* is a sequence of \(x = (x_1, x_2, \ldots) \) where each \(x_i \) is an event/time pair of the form \((e_i, \tau_i) \) such that:

- \(e_i \in A \), the set of signals.
- \(\tau_i \in \mathbb{Q} \), the set of nonnegative rational numbers.

A timed trace must satisfy the following two properties:

- **Monotonicity**: for all \(i \), \(\tau_i \leq \tau_{i+1} \).
- **Progress**: if \(x \) is infinite, then for every \(\tau \in \mathbb{Q} \) there exists an index \(i \) such that \(\tau_i > \tau \).
Module M allows time to advance to time τ if for each $w' \in I \cup O$ and $\tau' < \tau$ such that $x(w', \tau') \in S$ implies that $x(w', \tau'') \in S$ for some $\tau'' \geq \tau$.

This means that after trace x, module M can allow time to advance to τ without needing an input or producing an output.

We denote this by the predicate $\text{advance_time}(M, x, \tau)$.
In timed case, must check that output is produced at an acceptable time.

Consider $M = \langle I, O, S \rangle$ composed of $\{M_1, \ldots, M_n\}$, where $M_k = \langle I_k, O_k, S_k \rangle$.

Consider $x = (x_1, \ldots, x_m)$, where $x_m = (w, \tau)$ and $w \in O_k$ for some $k \leq n$.

x causes a failure if $\text{advance_time}(M, (x_1, \ldots, x_{m-1}), \tau), x \in S_k$, but $x \notin S$.

This means that some module produces a transition on one of its outputs before some module is prepared to receive it.

These types of failures are called safety failures.
A timing failure occurs when some module does not receive an input in time.

Either some input fails to occur or occurs later than required.

There are several ways to characterize timing failures formally, with each choice having different effects on the difficulty of verification.

For the most general definition, it is no longer possible to use mirrors without some extra complexity.
Protocol verification:
- Linear temporal logic (LTL)
- Timed LTL

Circuit verification:
- Trace structures
- Conformance checking
- Timed trace theory